Skip to main content
Log in

Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The present study assesses the resilience of the Mediterranean gilthead seabream (Sparus aurata) to acute warming and water acidification, using cellular indicators of systemic to molecular responses to various temperatures and CO2 concentrations. Tissue metabolic capacity derived from enzyme measurements, citrate synthase, 3-hydroxyacyl CoA dehydrogenase (HOAD), as well as lactate dehydrogenase. Cellular stress and signaling responses were identified from expression patterns of Hsp70 and Hsp90, the phosphorylation of p38 MAPK, JNKs and ERKs, from protein ubiquitylation and finally from the levels of transcription factor Hif-1α as an indicator of systemic hypoxemia. Exposure to elevated CO2 levels at temperatures higher than 24 °C generally caused an increase in fish mortality above the rate caused by warming alone, indicating effects of the two factors and a failure of acclimation and thus the limits of phenotypic plasticity to be reached. As a potential reason, tissue-dependent induction and stabilization of Hif-1α indicate hypoxemic conditions. Their exacerbation by enhanced CO2 levels is linked to the persistent expression of Hsp70 and Hsp90, oxidative stress and activation of MAPK and ubiquitin pathways. Antioxidant defence is enhanced by expression of catalase and glutathione reductase, however, leaving superoxide dismutase suppressed by elevated CO2 levels. On longer timescales in specimens surviving warming and CO2 exposures, various metabolic adjustments initiate a preference to oxidize lipid via HOAD for energy supply. These processes indicate significant acclimation up to a limit and a time-limited capacity to survive extreme conditions passively by exploiting mechanisms of cellular resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    CAS  PubMed  Google Scholar 

  • Anestis A, Pörtner HO, Michaelidis B (2010) Anaerobic metabolic patterns related to stress responses in hypoxia exposed mussels Mytilus galloprovincialis. J Exp Mar Biol Ecol 394(1–2):123–133

    Article  CAS  Google Scholar 

  • Antonopoulou E, Kentepozidou E, Roufidou C, Despoti S, Feidantsis K, Chatzifotis S (2013) Starvation and re-feeding affect the expression of Hsp, MAPK and antioxidative enzymes of European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A 165:79–88

    Article  CAS  Google Scholar 

  • Brodte E, Knust R, Pörtner HO (2006) Temperature-dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae). Polar Biol 30:95–107

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Meth Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Burton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42(3):517–525

    Article  Google Scholar 

  • Caldeira K, Wilckett ME (2003) Antropogenic carbon and ocean pH. Nature 425(6956):365

    Article  CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase assay. Meth Enzymol. Academic Press, Orlando 113:484–495

  • Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734:112–126

    Article  CAS  PubMed  Google Scholar 

  • Chapman RW, Mancia A, Beal M, Veloso A, Rathburn C, Blair A, Holland AF, Warr GW, Didinato G, Sokolova IM, Wirth EF, Duffy E, Sanger D (2011) The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions. Mol Ecol 20:1431–1449

    Article  PubMed  Google Scholar 

  • Christensen AB, Nguyen HD, Byrne M (2011) Thermotolerance and the effects of hypercapnia on the metabolic rate of the ophiuroid Ophionereis schayeri: inferences for survivorship in a changing ocean. J Exp Mar Biol Ecol 403:31–38

    Article  Google Scholar 

  • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17(24):7151–7160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen G, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34(1):30–38

    Article  CAS  PubMed  Google Scholar 

  • Couturier CS, Stecyk JAW, Rummer JL, Munday PL, Nilsson GE (2013) Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comp Biochem Physiol A: Mol Integr Physiol 166:482–489

    Article  CAS  Google Scholar 

  • Deigweiher K, Koschnick N, Pörtner H-O, Lucassen M (2008) Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. Am J Physiol Regul Integr Comp Physiol 295:R1660–R1670

    Article  CAS  PubMed  Google Scholar 

  • Deng DF, Wang F, Lee S, Bai S, Hung Silas SO (2009) Feeding rate affects heat shock protein levels in liver of larval white sturgeon (Acipenser transmontanus). Aquaculture 287:223–226

    Article  CAS  Google Scholar 

  • Driedzic WR, Almeida-Val VMF (1996) Enzymes of cardiac energy metabolism in Amazonian teleosts and the fresh-water stingray (Potamotrygon hystrix). J Exp Zool 274:327–333

  • Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332(6025):109–112

    Article  CAS  PubMed  Google Scholar 

  • Enzor LA, Zippay ML, Place SP (2013) High latitude fish in a high CO2 world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comp Biochem Physiol A 164(1):154–161

    Article  CAS  Google Scholar 

  • Farrow SN, Brown R (1996) New members of the bcl-2 family and their protein partners. Cur Opin Genet Den 6:45–49

    Article  CAS  Google Scholar 

  • Feidantsis K, Pörtner HO, Lazou A, Kostoglou B, Michaelidis B (2009) Metabolic and molecular stress responses of the gilthead sea bream Sparus aurata during long term exposure to increasing temperatures. Mar Biol 156:797–809

    Article  CAS  Google Scholar 

  • Feidantsis K, Pörtner HO, Markou T, Lazou A, Michaelidis B (2012) Involvement of p38 MAPK in the induction of Hsp70 during acute thermal stress in red blood cells of the gilthead sea bream, Sparus aurata. J Exp Zool 317:303–310

    Article  CAS  Google Scholar 

  • Feidantsis K, Antonopoulou E, Lazou A, Pörtner HO, Michaelidis B (2013) Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata). J Comp Physiol B 183:625–639

    Article  CAS  PubMed  Google Scholar 

  • Finck BN (2004) The role of the peroxisome proliferator-activated receptor alpha pathway in pathological remodeling of the diabetic heart. Curr Opin Clin Nutr Metab Care 7:391–396

    Article  CAS  PubMed  Google Scholar 

  • Finck BN, Kelly DP (2002) Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol 34:1249–1257

    Article  PubMed  Google Scholar 

  • Findlay HS, Burrows MT, Kendall MA, Spicer JI, Widdicombe S (2010) Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology 91:2931–2940

    Article  PubMed  Google Scholar 

  • Fujii R, Yamashita S, Hibi M, Hirano T (2000) Asymmetric p38 activation in zebrafish: its possible role in symmetric and synchronous cleavage. J Cell Biol 150:1335–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gracey AY (2007) Interpreting physiological responses to environmental change through gene expression profiling. J Exp Biol 210(9):1584–1592

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Matsuo Y, Yokoyama Y, Toyohara H, Sakaguchi M (1997) Structure and expression of carp mitogen-activated protein kinases homologous to mammalian JNK/SAPK. J Biochem (Tokyo) 122:381–386

    Article  CAS  Google Scholar 

  • Hashimoto H, Yokoyama Y, Matsuo Y, Toyohara H, Kohno M, Sakaguchi M (1998) Existence of two isoforms of extracellular signal regulated kinase in fish. J Biochem (Tokyo) 123:1031–1035

    Article  CAS  Google Scholar 

  • Hayashi M, Kita J, Ishimatsu A (2004) Acid-base responses to lethal aquatic hypercapnia in three marine fishes. Mar Biol 144(1):153–160

    Article  CAS  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Abele D, Pörtner HO (2006) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout (Zoarces viviparus). J Exp Biol 209:353–363

    Article  CAS  PubMed  Google Scholar 

  • Heise K, Estevez MS, Puntarulo S, Galleano M, Nikinmaa M, Pörtner HO, Abele D (2007) Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. J Comp Physiol B 177:765–777

    Article  CAS  PubMed  Google Scholar 

  • Hockenbery DM (1995) bcl-2, a novel regulator of cell death. BioEssays 17:631–638

    Article  CAS  PubMed  Google Scholar 

  • Hofmann GE (2005) Patterns of Hsp gene expression in ectothermic marine organisms on small to large biogeographic scales. Integr Comp Biol 45:247–255

    Article  CAS  PubMed  Google Scholar 

  • Hofmann GE, Somero GN (1995) Interspecies variation in thermal denaturation of proteins in the congeneric mussels Mytilus trossulus and M. galloprovincialis: evidence from the heat-shock response and protein ubiquitination. Mar Biol 126:65–75

    Article  Google Scholar 

  • Huning AK, Melzner F, Thomsen J, Gutowska MA, Krämer L, Frickenhaus S, Rosenstiel P, Pörtner HO, Philipp EER, Lucassen M (2012) Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol. doi:10.1007/s00227-012-1930-9

    Google Scholar 

  • Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578

    Article  CAS  PubMed  Google Scholar 

  • Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iftikar FI, Hickey AJ (2013) Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS ONE 8:e64120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Panel on Climate Change (2007) Climate Change 2007: Synthesis Report Contributions of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachuri RK, Reisinger A. (Eds.) IPCC Geneva

  • International Panel on Climate Change (2013) Climate change 2013: synthesis report Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T, Dahe Q, Plattner GK (eds) Core Writing Team. IPCC, Stockholm

    Google Scholar 

  • Ishimatsu A, Kikkawa T, Hayashi M, Lee KS, Kita J (2004) Effects of CO2 on marine fish: larvae and adults. J Oceanogr 60(4):731–741

    Article  CAS  Google Scholar 

  • Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO2, acidified oceans. Mar Ecol Prog Ser 373:295–302

    Article  CAS  Google Scholar 

  • Iwama GK (1999) Stress in fish. Stress of life: from molecules to man. Ann N Y Acad Sci 851:304–310

    Article  Google Scholar 

  • Iwama KG, Thomas TP, Forsyth BR, Vijayan MM (1998) Heat shock expression in fish. Rev Fish Biol Fisher 8:35–56

    Article  Google Scholar 

  • Jayasundara N, Somero GN (2013) Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis. J Exp Biol 216(11):2111–2121

    Article  PubMed  Google Scholar 

  • Kassahn KS, Crozier RS, Pörtner HO, Caley MJ (2009) Animal performance and stress responses and tolerance limits at different levels of biological organisation. Biol Rev 84:277–292

    Article  PubMed  Google Scholar 

  • Katschinski DM, Le L, Heinrich D, Wagner KF, Hofer T, Schindler SG, Wenger RH (2002) Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity. J Biol Chem 277:9262–9267

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    Article  CAS  PubMed  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  Google Scholar 

  • Kültz D, Avila K (2001) Mitogen activated protein kinases are in vivo transducers of osmosensory signals in fish gill cells. Comp Biochem Physiol B 129:821–829

    Article  PubMed  Google Scholar 

  • Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of Oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CG, Farrell AP, Lotto A, MacNutt MJ, Hinch SG, Healey MC (2003) The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O-kisutch) salmon stocks. J Exp Biol 206(18):3239

  • Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15:642–649

    Article  CAS  PubMed  Google Scholar 

  • MacDougal KG, Merickob PA, Burnett KG (1984) Antigen receptor-mediated activation of extracellular related kinase (ERK) in B lymphocytes of teleost fishes. BBA 783:137–143

    Google Scholar 

  • MacKenzie DJ, Piccolella M, Valle AZD, Taylor EW, Bolis CL, Steffensen JF (2003) Tolerance of chronic hypercapnia by the European eel Anguilla anguilla. J Exp Biol 206:1717–1726

    Article  Google Scholar 

  • Mark FC, Bock C, Pörtner HO (2002) Oxygen limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol 283(5):R1254–R1262

    CAS  Google Scholar 

  • Melatunan S, Calosi P, Rundle SD, Moody J, Widdicombe S (2011) Exposure to Elevated Temperature and Pco2 Reduces Respiration Rate and Energy Status in the Periwinkle Littorina littorea. Physiol Biochem Zool 84(6):583–594

    Article  CAS  PubMed  Google Scholar 

  • Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32(3):144–151

    Article  Google Scholar 

  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  • Michaelidis B, Spring A, Pörtner HO (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150:1417–1429

    Article  Google Scholar 

  • Moon TW, Mommsen TP (1987) Enzymes of intermediary metabolism in tissues of the little skate. Raja erinacea. J Exp Zool 244(1):9–15

    Article  CAS  Google Scholar 

  • Munday PL, Kingsford MJ, O’Callaghan M, Donelson JM (2008) Elevated temperature restricts growth potential of the coral reef fish Acanthochromis polyacanthus. Coral Reefs 27:927–931

    Article  Google Scholar 

  • Munday PL, Crawley NE, Nilsson GE (2009) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388:235–242

    Article  CAS  Google Scholar 

  • Nikinmaa M (2002) Oxygen-dependent cellular functions—why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A 133(1):1–16

    Article  Google Scholar 

  • Paoletti F, Mocali A (1990) Determination of Superoxide dismutase activity by purely chemical system based on NAD(P)H oxidation. Meth Enzymol 186:209–220

    Article  CAS  PubMed  Google Scholar 

  • Pierrot D, Lewis E,Wallace DWR (2006) MS Excel program developed for CO2 system calculations. Macro for low salinities. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

  • Pohlmann JR, Brant DO, Daul MA, Reoma JL, Kim AC, Osterholzer KR, Johnson KJ, Bartlett RH, Cook KE, Hirsch RB (2011) Total liquid ventilation provides superior respiratory support to conventional mechanical ventilation in a large animal model of severe respiratory failure. ASAIO J 57(1):1–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Article  PubMed  Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Article  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213(6):881–893

    Article  PubMed  Google Scholar 

  • Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. MEPS 470:273–290

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Ecology: physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Article  PubMed  Google Scholar 

  • Pörtner HO, Marc FC, Book C (2004) Oxygen limited thermal tolerance in fish? Answers obtained by nuclear magnetic resonance techniques. Resp Physiol Neurobiol 141:243–260

    Article  Google Scholar 

  • Quay P (2002) Ups and downs of CO2 uptake. Science 298(5602):2344

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (1997) Cytochrome c: can’t live with it—Can’t live without it. Cell 91(5):559–562

    Article  CAS  PubMed  Google Scholar 

  • Rissanen E, Tranberg HK, Sollid J, Nillson GE, Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 9:994–1003

  • Russell LK, Finck BN, Kelly DP (2005) Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 38:81–91

    Article  CAS  PubMed  Google Scholar 

  • Salach JI (1978) Preparation of monoamine oxidase from beef liver mitochondria. Meth Enzymol 53:495–501

    Article  CAS  PubMed  Google Scholar 

  • Sidell BD, Driedzic WR, Stowe DB, Johnston IA (1987) Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiol Zool 60(2):221–232

    Google Scholar 

  • Singer TD, Ballantyne JS (1989) Absence of extrahepatic lipid oxidation in a fresh-water elasmobranch, the dwarf stingray potamotrygon-magdalenae—evidence from enzyme-activities. J Exp Zool 251(3):355–360

    Article  CAS  Google Scholar 

  • Smith LS, Bell GR (1964) A technique for prolonged blood sampling in free-swimming salmon. J Fish Res Board Can 21(4):711

    Article  Google Scholar 

  • Somero NG (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  PubMed  Google Scholar 

  • Stanley WC, Lopaschuk GD, McCormack JG (1997) Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 34:25–33

    Article  CAS  PubMed  Google Scholar 

  • Stensløkken K, Ellefsen S, Larsen HK, Vaage J, Nilsson GE (2010) Expression of heat shock proteins in anoxic crucian carp (Carassius carassius): support for cold as a preparatory cue for anoxia. Am J Physiol 298:R1499–R1508

    Google Scholar 

  • Strobel A, Bennecke S, Leo E, Mintenbeck K, Pörtner HO, Mark FC (2012) Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and pCO2. Front Zool. doi:10.1186/1742-9994-9-28

    PubMed Central  PubMed  Google Scholar 

  • Strobel A, Leo E, Pörtner HO, Mark FM (2013) Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comp Biochem Physiol B 166(1):48–57

  • Terova G, Rimoldi S, Corà S, Bernardini G, Gornati S, Saroglia M (2008) Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279:150–159

    Article  CAS  Google Scholar 

  • Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594

    Article  CAS  PubMed  Google Scholar 

  • Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979

    Article  CAS  PubMed  Google Scholar 

  • Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM (2011) Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 214:1836–1844

    Article  CAS  PubMed  Google Scholar 

  • Tseng YC, Hu MY, Stumpp M, Lin LY, Melzner F, Hwang PP (2013) CO2-Driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comp Biochem Physiol A 165(2):119–130

    Article  CAS  Google Scholar 

  • Van Dijk PLM, Tesch C, Hardewig I, Pörtner HO (1999) Physiological disturbances at critically high temperatures. A comparison between stenothermal Antarctic, and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202:3611–3621

    PubMed  Google Scholar 

  • Vargas-Chacoff L, Arjona FJ, Polakof S, Martín del Río MP, Soengas JL, Mancera JM (2009) Interactive effects of environmental salinity and temperature on metabolic responses of gilthead sea bream Sparus aurata. Comp Biochem Physiol A 154:417–424

  • Walther M, Roffeis J, Jansen C, Anton M, Ivanov I, Kuhn H (2009) Structural basis for pH-dependent alterations of reaction specificity of vertebrate lipoxygenase isoforms. BBA. Mol Cell Biol L 1791(8):827–835

  • Wood HL, Spicer JI, Lowe DM, Widdicombe S (2010) Interaction of ocean acidification and temperature; the high cost of survival in the brittlestar Ophiura ophiura. Mar Biol 157(9):2001–2013

    Article  Google Scholar 

  • Yamashita M, Yabu T, Ojima N (2010) Stress Protein HSP70 in Fish. ABSM 3:111–141

    Google Scholar 

  • Zippay ML, Hofmann GE (2010) Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens). J Shellfish Res 29(2):429–439

    Article  Google Scholar 

  • Zittier ZMC, Hirse H, Pörtner HO (2012) The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid–base balance in the spider crab. Mar Biol, Hyas araneus. doi:10.1007/s00227-012-2073-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Michaelidis.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feidantsis, K., Pörtner, HO., Antonopoulou, E. et al. Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata . J Comp Physiol B 185, 185–205 (2015). https://doi.org/10.1007/s00360-014-0875-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0875-3

Keywords

Navigation