Skip to main content
Log in

Redox homeostasis and respiratory metabolism in camels (Camelus dromedaries): comparisons with domestic goats and laboratory rats and mice

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We have previously reported the occurrence of multiple forms of drug-metabolizing enzymes in camel tissues. Here, we investigate glutathione (GSH)-dependent redox homeostasis, reactive oxygen species (ROS) production and mitochondrial respiratory functions in camel tissues and compare them with imported domestic goats and laboratory rats and mice. Cytochrome P450 2E1 (CYP 2E1) and GSH-metabolizing enzymes were differentially expressed in the liver and kidney of these animals. Camel liver has significantly lower GSH pool than that in goats, rats and mice. Mitochondria isolated from the tissues of these animals showed a comparable ability to metabolize specific substrates for respiratory enzyme complexes I, II/III and IV. These complexes were metabolically more active in the kidney than in the liver of all the species. Furthermore, the activity of complex IV in camel tissues was significantly lower than in other species. On the other hand, complex II/III activity in camel kidney was higher compared to the other species. In addition, as expected, we observed that inhibitors of these enzyme complexes augment the production of mitochondrial ROS in camel and goat tissues. These results help to better understand the metabolic ability and adaptation in desert camels in comparison with domestic goats and laboratory rats and mice since they are exposed to different environmental and dietary conditions. Our study may also have implications in the pharmacology and toxicology of drugs and pollutants in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CYP 2E1:

Cytochrome P450 2E1

GSH:

Glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferase

GSH-Px:

Glutathione peroxidase

GSSG reductase:

Glutathione reductase

LPO:

Lipid peroxidation

NAD(P)H:

Nicotinamide adenine dinucleotide(phosphate) reduced

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    Article  CAS  PubMed  Google Scholar 

  • Alam K, Moinuddin, Jabeen S (2007) Immunogenicity of mitochondrial DNA modified by hydroxyl radical. Cell Immunol 247:12–17

  • Alquarawi AA, Ali BH (2000) A survey of the literature (1995–1999) on the kinetics of drugs in camels (Camelus dromedaries). Vet Res Commun 24:245–260

    Article  CAS  PubMed  Google Scholar 

  • Birch-Machin MA, Turnbull DM (2001) Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol 65:97–117

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Affortit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    Article  CAS  PubMed  Google Scholar 

  • El Bahri L, Souilem O, Djegham M, Belguith J (1999) Toxicity and adverse reactions to some drugs in dromedary (Camelus dromedaries). Vet Hum Toxicol 41:35–48

    CAS  PubMed  Google Scholar 

  • Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S (2005) Role of mitochondria in toxic oxidative stress. Mol Interv 5:94–111

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Checa JC, Kaplowitz N (2005) Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol Appl Pharmacol 204:263–273

    Article  CAS  PubMed  Google Scholar 

  • Galati D, Srinivasan S, Raza H, Prabu SK, Hardy M, Karunakaran C, Lopez M, Kalyanaraman B, Avadhani NG (2009) Role of nuclear encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochem J 420:439–449

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz C, Fernandez-Checa JC (2006) Mitochondrial glutathione: hepatocellular survival-death switch. J Gasteroenterol Hepatol 21:S3–S6

    Article  CAS  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2009) Mitochondria as targets for chemotherapy. Apoptosis 14:624–640

    Article  CAS  PubMed  Google Scholar 

  • Hoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284:16236–16245

    Article  CAS  PubMed  Google Scholar 

  • Lash LH (2006) Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67

    Article  CAS  PubMed  Google Scholar 

  • Luberda Z (2005) The role of glutathione in mammalian gametes. Reprod Biol 5:5–17

    PubMed  Google Scholar 

  • Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Remmen HV (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Ann Rev Pharmacol Toxicol 47:143–183

    Article  CAS  Google Scholar 

  • Poyton RO, Ball KA, Castello PR (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 20:332–340

    Article  CAS  PubMed  Google Scholar 

  • Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG (2006) Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 281:2061–2070

    Article  CAS  PubMed  Google Scholar 

  • Raza H, John A (2006) 4-Hydroxynonenal induces mitochondrial oxidative stress, apoptosis and expression of glutathione S-transferase A4-4 and cytochrome P450 2E1 in PC12 cells. Toxicol Appl Pharmacol 216:309–318

    Article  CAS  PubMed  Google Scholar 

  • Raza H, Montague W (1993) Drug and xenobiotic metabolizing enzymes in camel liver. Multiple forms and species specific expression. Comp Biochem Physiol 104C:137–145

    CAS  Google Scholar 

  • Raza H, Montague W (1994) Metabolism of benzo (a) pyrene, dimethylbenzathracene and aflatoxin B1 by camel liver microsomes. Comp Biochem Physiol 107C:379–386

    CAS  Google Scholar 

  • Raza H, Lakhani MS, John A, Ahmed I, Morgenstern R, Montague W (1997) Tissue specific expression of glutathione S-transferases, glutathione concentration and lipid peroxidation in camel tissues. Comp Biochem Physiol B 118:829–835

    Article  Google Scholar 

  • Raza H, John A, Lakhani MS, Ahmed I, Montague W (1998) Multiplicity and tissue specific expression of camel cytochrome P450. Comp Biochem Physiol C 121:205–211

    CAS  PubMed  Google Scholar 

  • Raza H, Robin MA, Fang J-K, Avadhani NG (2002) Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 366:45–55

    CAS  PubMed  Google Scholar 

  • Raza H, Bhagwat SV, John A (2004a) Flavin-containing monooxygenase activity in camel tissues: comparison with rat and human liver enzymes. Comp Biochem Physiol C 139:289–293

    Google Scholar 

  • Raza H, Prabu SK, Robin MA, Avadhani NG (2004b) Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetes rats. Diabetes 53:185–194

    Article  CAS  PubMed  Google Scholar 

  • Raza H, John A, Brown EM, Benedict S, Kambal A (2008) Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 226:161–168

    Article  CAS  PubMed  Google Scholar 

  • Robin MA, Anandatheerathavarada HK, Fang JK, Cudic M, Otvos L, Avadhani NG (2001) Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contain an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. J Biol Chem 276:24680–24689

    Article  CAS  PubMed  Google Scholar 

  • Robin MA, Prabu SK, Raza H, Anandatheerathavarada HK, Avadhani NG (2003) Phosphorylation enhances mitochondrial targeting of GSTA4-4 through increased affinity for binding to cytoplasmic Hsp70. J Biol Chem 278:18960–18970

    Article  CAS  PubMed  Google Scholar 

  • Schatten H, Prather RS, Sun QY (2005) The significance of mitochondria for embryo development in cloned farm animals. Mitochondrion 5:303–321

    Article  CAS  PubMed  Google Scholar 

  • Spear JF, Prabu SK, Galati N, Raza H, Anandatheerthavarada HK, Avadhani NG (2007) Beta 1-adrenoreceptor activation contributes to ischemia-reperfusion damage as well as playing a role in ischemic preconditioning. Am J Physiol 292:H2459–H2466

    CAS  Google Scholar 

  • Yuan L, Kaplowitz N (2009) Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 30:29–41

    Article  CAS  PubMed  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank UAE University for Research Affairs Individual Grant and also to the grants from the FMHS Research Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haider Raza.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Otaiba, A., John, A., Al-Belooshi, T. et al. Redox homeostasis and respiratory metabolism in camels (Camelus dromedaries): comparisons with domestic goats and laboratory rats and mice. J Comp Physiol B 180, 1121–1132 (2010). https://doi.org/10.1007/s00360-010-0482-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-010-0482-x

Keywords

Navigation