Skip to main content
Log in

Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO2, respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb’s cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53:885–892

    Article  CAS  PubMed  Google Scholar 

  • Barger JL, Brand MD, Barnes BM, Boyer BB (2003) Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. Am J Physiol Integr Comp Physiol 284:R1306–R1313

    CAS  Google Scholar 

  • Bishop T, Brand MD (2000) Processes contributing to metabolic depression in hepatopancreas cells from the snail Helix aspersa. J Exp Biol 203:3603–3612

    CAS  PubMed  Google Scholar 

  • Bishop T, St-Pierre J, Brand MD (2002) Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells. Am J Physiol 282:R372–R382

    CAS  Google Scholar 

  • Boutilier RG, St-Pierre J (2002) Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression. J Exp Biol 205:2287–2296

    CAS  PubMed  Google Scholar 

  • Brand MD (2005) The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33(pt 5):897–904

    CAS  PubMed  Google Scholar 

  • Brand MD, Chien LF, Diolez P (1994) Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem J 297:27–29

    CAS  PubMed  Google Scholar 

  • Brand MD, Pakay JL, Ocloo J, Kokoszka DC, Brooks PS, Cornwall EJ (2005) The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392:353–362

    Article  CAS  PubMed  Google Scholar 

  • Brooks PS (2005) Mitochondrial H+ leak and ROS generation: an odd couple. Free Radic Biol 38:12–23

    Article  Google Scholar 

  • Brown JCL, Gerson AR, Staples JF (2007) Mitochondrial metabolism during daily torpor in the dwarf Siberian hamster: role of active regulated changes and passive thermal effects. Am J Physiol 293(5):R1833–R1845

    CAS  Google Scholar 

  • Cadenzas S, Buckingham J, St-Pierre J, Dickenson K, Jones R, Brand M (2000) AMP decreases the efficiency of skeletal-muscle mitochondria. Biochem J 351:307–311

    Article  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 64:277–359

    Article  Google Scholar 

  • Chance B, Williams GR (1955) A simple and rapid assay of oxidative phosphorylation. Nature 175:1120–1121

    Article  CAS  PubMed  Google Scholar 

  • Duerr JM, Hillman SS (1993) An analysis of pH tolerance and substrate preference of isolated skeletal muscle mitochondria from Bufo marinus and Rana catesbeiana. Comp Biochem Physiol 106(4):889–893

    Article  CAS  Google Scholar 

  • Duong CA, Sepulveda CA, Graham JB, Dickson KA (2006) Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata). J Exp Biol 209:2678–2685

    Article  CAS  PubMed  Google Scholar 

  • Fangue NA, Richards JG, Schulte PM (2009) Do mitochondrial properties explain intraspecific variation in thermal tolerance? J Exp Biol 212:514–522

    Article  CAS  PubMed  Google Scholar 

  • Groen AK, Wanders RJ, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257(66):2754–2757

    CAS  PubMed  Google Scholar 

  • Hafner RP, Brown GC, Brand MD (1990) Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and proton motive force in isolated mitochondria using the ‘top-down’ approach of metabolic control theory. Eur J Biochem 188(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Heise K, Puntarulo S, Portner H, Abele D (2003) Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Biophys C 134(1):79–90

    CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation, mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hodges TK, Leonard RT (1974) Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol 32(part B):392–406

    Article  CAS  PubMed  Google Scholar 

  • Janssen AJM, Trijbels FM, Sengers RCA, Smeitink JAM, Van Den Heuvel LP, Wintjes TM, Stoltenborg-Hogenkamp BJM, Rodenburg JT (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53:729–734

    Article  CAS  PubMed  Google Scholar 

  • Jastroch M, Buckingham J, Helwig M, Klingenspor M, Brand M (2007) Functional characterization of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. J Comp Physiol B 177(7):743–752

    Article  CAS  PubMed  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    Article  CAS  PubMed  Google Scholar 

  • Kadenbach B, Ramzan R, Wen L, Vogt S (2009) New extension of the Mitchell theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta. doi:10.1016/j.bbagen.2009.04.019

  • Kayes SM, Cramp RL, Hudson NJ, Franklin CE (2009) Surviving the drought: burrowing energy by increasing mitochondrial coupling. J Exp Biol 232:2248–2253

    Article  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Mark W, Steurer W, Saks V, Usson Y, Margreiter R, Gnaiger E (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286:H1633–H1641

    Article  CAS  PubMed  Google Scholar 

  • Lea MS, Hillman SS (1990) Effects of osmolality and solutes on performance of shark heart mitochondria. J Exp Zool 255:9–15

    Article  Google Scholar 

  • McMullen DC, Storey KB (2008) Mitochondria of cold hardy insects: Responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochem Mol Biol 38:367–373

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Shukla S (1994) Effects of endosulfan on bioenergetic properties of liver-mitochondria from the fresh-water catfish Clarias batrachus. Pestic Biochem Physiol 50(3):240–246

    Article  CAS  Google Scholar 

  • Murphy MP, Brand MD (1987) The control of electron flux through cytochrome oxidase. Biochem J 243(2):499–505

    CAS  PubMed  Google Scholar 

  • Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? T Biochem Sci 31(1):26–34

    Article  CAS  Google Scholar 

  • Papa S, Guerrieri F, Capitanio N (1997) A possible role of slips in cytochrome c oxidase in the antioxygen defense system of the cell. Biosci Rep 17(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Papa S, De Rasmo D, Scacco S, Signorile A, Technikova-Dobrova Z, Palmisano G, Sardanelli AM, Papa F, Panelli D, Scaringi R, Santeramo A (2008) Mammalian complex I: a regulable and vulnerable pacemaker in mitochondrial respiratory function. Biochim Biophys Acta 1777:719–728

    Article  CAS  PubMed  Google Scholar 

  • Podrabsky JE (1999) Husbandry of the annual killifish Austrofundulus limnaeus with special emphasis on the collection and rearing of embryos. Environ Biol Fish 54:421–431

    Article  Google Scholar 

  • Podrabsky JE, Hand SC (1999) The bioenergetics of embryonic diapause in an annual killifish Austrofundulus limnaeus. J Exp Biol 202:2567–2580

    CAS  PubMed  Google Scholar 

  • Podrabsky JE, Hrbek T, Hand SC (1998) Physical and chemical characteristics of ephemeral pond habitats in the Maracaibo basin and Llanos region of Venezuela. Hydrobiologica 362:67–78

    Article  Google Scholar 

  • Podrabsky JE, Lopez JP, Fan TWM, Higashi R, Somero GN (2007) Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis. J Exp Biol 210:2253–2266

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JA, Hand SC (2004) Differences in isolated mitochondria are insufficient to account for respiratory depression during diapause in Artemia franciscana embryos. Physiol Biochem Zool 77(3):366–377

    Article  CAS  PubMed  Google Scholar 

  • Rolfe D, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol 271:C1380–C1389

    CAS  PubMed  Google Scholar 

  • Rosing J, Harris DA, Kemp A, Slater EC (1975) Nucleotide-binding properties of native and cold-treated mitochondrial ATPase. Biochim Biophys Acta 376:13–26

    Article  CAS  PubMed  Google Scholar 

  • Savina MV, Gamper NL (1998) Respiration and adenine nucleotides of Baltic lamprey (Lampetra fluviatilis L.) hepatocytes during spawning migration. Comp Biochem Physiol B 120:375–383

    Article  Google Scholar 

  • Savina MV, Emelyanova LV, Belyaeva EA (2006) Bioenergetic parameters of lamprey and frog liver mitochondria during metabolic depression and activity. Comp Biochem Physiol B 145:296–305

    Article  PubMed  Google Scholar 

  • Scott ID, Nicholls DG (1980) Energy transduction in intact synaptosomes. Biochem J 186:21–33

    CAS  PubMed  Google Scholar 

  • Storey KB, Hochachka PW (1974) Enzymes of energy metabolism from a vertebrate facultative anaerobe, Pseudemys scripta. Turtle heart phosphofructokinase. J Biol Chem 249(5):1417–1422

    CAS  PubMed  Google Scholar 

  • St-Pierre J, Brand MD, Boutilier RG (2000a) The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. J Exp Biol 209:1469–1476

    Google Scholar 

  • St-Pierre J, Brand MD, Boutilier RG (2000b) Mitochondria as ATP consumers: cellular treason in anoxia. Proc Natl Acad Sci 97:8670–8674

    Article  CAS  PubMed  Google Scholar 

  • Stuart JA, Gillis TE, Ballantyne JS (1998) Compositional correlates of metabolic depression in the mitochondrial membranes of estivating snails. Am J Physiol 275:R1977–R1982

    CAS  PubMed  Google Scholar 

  • Trzcionka M, Withers KW, Klingenspor M, Jastroch M (2008) The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. J Exp Biol 211:1911–1918

    Article  CAS  PubMed  Google Scholar 

  • Villani G, Attardi G (1997) In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci 94(4):1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Wourms JP (1972a) Developmental biology of annual fishes. I. Stages in the normal development of Austrofundulus myersi Dahl. J Exp Zool 182:143–168

    Article  CAS  PubMed  Google Scholar 

  • Wourms JP (1972b) The developmental biology of annual fishes III. Pre-embryonic and embryonic diapause of variable duration in the eggs of annual fishes. J Exp Zool 182:389–414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation grant IOB-0344578 to JEP and a Faculty Research Development Grant from George Fox University to JMD. The authors also wish to thank S.S. Hillman for helpful discussions and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Duerr.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duerr, J.M., Podrabsky, J.E. Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance. J Comp Physiol B 180, 991–1003 (2010). https://doi.org/10.1007/s00360-010-0478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-010-0478-6

Keywords

Navigation