Skip to main content
Log in

Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Leptin and adiponectin are proteins produced and secreted from white adipose tissue and are important regulators of energy balance and insulin sensitivity. Seasonal changes in leptin and adiponectin have not been investigated in mammalian hibernators in relationship to changes in fat cell and fat mass. We sought to determine the relationship between serum leptin and adiponectin levels with seasonal changes in lipid mass. We collected serum and tissue samples from marmots (Marmota flaviventris) in different seasons while measuring changes in fat mass, including fat-cell size. We found that leptin is positively associated with increasing fat mass and fat-cell size, while adiponectin is negatively associated with increasing lipid mass. These findings are consistent with the putative roles of these adipokines: leptin increases with fat mass and is involved in enhancing lipid oxidation while adiponectin appears to be higher in summer when hepatic insulin sensitivity should be maintained since the animals are eating. Our data suggest that during autumn/winter animals have switched from a lipogenic condition to a lipolytic state, which may include leptin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS et al (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382(6588):250–252

    Article  CAS  PubMed  Google Scholar 

  • Baldini G et al (1992) Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proc Natl Acad Sci USA 89(11):5049–5052

    CAS  PubMed  Google Scholar 

  • Berg AH et al (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7(8):947–953

    Article  CAS  PubMed  Google Scholar 

  • Berg AH, Combs TP, Scherer PE (2002) ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13(2):84–89

    Article  CAS  PubMed  Google Scholar 

  • Boyer BB et al (1997) Leptin prevents posthibernation weight gain but does not reduce energy expenditure in arctic ground squirrels. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 118(3):405–412

    Article  CAS  PubMed  Google Scholar 

  • Combs TP et al (2003) Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 52(2):268–276

    CAS  PubMed  Google Scholar 

  • Combs TP et al (2004) A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145(1):367–383

    Article  CAS  PubMed  Google Scholar 

  • Concannon P et al (2001) Seasonal changes in serum leptin, food intake, and body weight in photoentrained woodchucks. Am J Physiol Regul Integr Comp Physiol 281(3):R951–959

    CAS  PubMed  Google Scholar 

  • DiGirolamo M, Mendlinger S, Fertig JW (1971) A simple method to determine fat cell size and number in four mammalian species. Am J Physiol 221:850–858

    CAS  PubMed  Google Scholar 

  • Florant GL (1998) Lipid metabolism in hibernators: the importance of essential fatty acids. Am Zool 38:331–340

    CAS  Google Scholar 

  • Florant GL et al (1985) Seasonal changes in pancreatic B-cell function in euthermic yellow-bellied marmots. Am J Physiol 249(2 Pt 2):R159–165

    CAS  PubMed  Google Scholar 

  • Florant GL et al (1990) Plasma and white adipose tissue lipid composition in marmots. Am J Physiol 258(5 Pt 2):R1123–1131

    CAS  PubMed  Google Scholar 

  • Fried SK, Moustaid-Moussa N (2001) Culture of adipose tissue and isolated adipocytes. Meth Mol Biol 155:197–212

    CAS  Google Scholar 

  • Fruebis J et al (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 98(4):2005–2010

    Article  CAS  PubMed  Google Scholar 

  • Goldrick RB (1967) Morphological changes in the adipocyte during fat deposition and mobilization. Am J Physiol 212:777–782

    CAS  PubMed  Google Scholar 

  • Havel PJ (2002) Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 13(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Hoehn KL, Hudachek SF, Summers SA, Florant GL (2004) Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators. Am J Physiol Regul Integr Comp Physiol 286(3):R498–504

    CAS  PubMed  Google Scholar 

  • Kronfeld-Schor N et al (2000) Dissociation of leptin secretion and adiposity during prehibernatory fattening in little brown bats. Am J Physiol Regul Integr Comp Physiol 279(4):R1277–1281

    CAS  PubMed  Google Scholar 

  • Le Lay S et al (2001) Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. J Biol Chem 276(20):16904–16910

    Article  PubMed  Google Scholar 

  • Margues B, Hausman DB, Martin RJ (1998) Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol 275(6 Pt 2):R1898–1908

    PubMed  Google Scholar 

  • Niswender KD, Schwartz MW (2003) Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 24(1):1–10

    CAS  PubMed  Google Scholar 

  • Ormseth OA et al (1996) Leptin inhibits prehibernation hyperphagia and reduces body weight in arctic ground squirrels. Am J Physiol 271(6 Pt. 2):R1775–1779

    Google Scholar 

  • Pulawa LK, Florant GL (2000) The effects of caloric restriction on the body composition and hibernation of the golden-mantled ground squirrel (Spermophilus lateralis). Physiol Biochem Zool 73(5):538–546

    CAS  PubMed  Google Scholar 

  • Qi Y et al (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10:524–529

    CAS  PubMed  Google Scholar 

  • Rajala MW, Scherer P (2003) The adipocyte: at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144(9):3765–3773

    CAS  PubMed  Google Scholar 

  • Rajala MW et al (2002) Cell type-specific expression and coregulation of murine resistin and resistin-like molecule-alpha in adipose tissue. Mol Endocrinol 16(8):1920–1930

    CAS  PubMed  Google Scholar 

  • Rajala MW et al (2004) Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53(7):1671–1679

    CAS  PubMed  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239(2):375–380

    CAS  PubMed  Google Scholar 

  • Rousseau K, Atcha Z, Loudon AS (2003) Leptin and seasonal mammals. J Neuroendocrinol 15(4):409–414

    CAS  PubMed  Google Scholar 

  • Scherer PE et al (1994) Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol 127(5):1233–1243

    CAS  PubMed  Google Scholar 

  • Tsao TS et al (2002a) Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J Biol Chem 277(33):29359–29362

    CAS  PubMed  Google Scholar 

  • Tsao TS, Lodish HF, Fruebis J (2002b) ACRP30, a new hormone controlling fat and glucose metabolism. Eur J Pharmacol 440(2–3):213–221

    Google Scholar 

  • Walsberg GE (1988) Evaluation of a nondestructive method for determining fat stores in small birds and mammals. Physiol Zool 61:153–159

    Google Scholar 

  • Wang P et al (1997) Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the golden-mantled ground squirrel (Spermophilus lateralis). Comp Biochem Physiol B Biochem Mol Biol 118(2):261–267

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Robert Handa’s lab at CSU for assistance with the leptin RIA kit; Dr. Susan Fried for technical assistance with the isolation of the fat cells; and Dr. Ying Lin, and Ann Marie Gage for outstanding technical assistance. This research was supported by a Grant from the American Heart Association (#5-35669) awarded to S.A.S., a NIH grant # DK60676-01 to G.L.F., a NIHMST program grant T32-GM07288 to M.R., and a NIH grant DK55758 to P.E.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Florant.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florant, G.L., Porst, H., Peiffer, A. et al. Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris). J Comp Physiol B 174, 633–639 (2004). https://doi.org/10.1007/s00360-004-0454-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-004-0454-0

Keywords

Navigation