Skip to main content
Log in

Glutamine synthetase in tilapia gastrointestinal tract: zonation, cDNA and induction by cortisol

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Glutamine synthetase, an enzyme generally associated with ammonia detoxication in the vertebrate brain and with hepatic nitrogen turnover in mammals, shows substantial activities in the gastrointestinal tract of teleostean fishes. Enzyme activity is highest in the central area of the stomach and reveals a distinct distribution pattern in stomach and along the intestine of tilapia (Oreochromis niloticus), rainbow trout (Oncorhynchus mykiss) and copper rockfish (Sebastes caurinus). In all three species, intestinal activity peaks in the distal region of the intestine. The brain contains the highest titre of the enzyme (46 U g−1 in tilapia brain versus 15 U g−1 in tilapia stomach), but because of the relative mass of the stomach, the largest glutamine synthetase pool in tilapia body appears to be localized in the stomach. Activities in white and red muscle are very modest at 0.1% of the brain. Independent of distribution, peak activities of glutamine synthetase in selected areas of tilapia stomach and intestine are significantly (two- to fourfold) increased after a 5-day treatment with an intraperitoneal cortisol deposit. Cortisol also increases glutamine synthetase activity in tilapia liver, white and red muscle, while activities in brain remain unaffected. We cloned and sequenced the predominant transcript of tilapia stomach glutamine synthetase (about 1.9 kb), encoding a 371-amino acid peptide. The open reading frame shows considerable identity with glutamine synthetase in toadfish (92% at peptide level, 87% at nucleotide level), but possesses a longer 3'-untranslated region than the toadfish. The tilapia glutamine synthetase mRNA contains a remnant of a putative mitochondrial leader sequence, but without a conserved second site for initiation of translation. We also find evidence for additional transcripts of glutamine synthetase in tilapia, suggesting multiple genes. Finally, we present evidence for similar abundance of glutamine synthetase transcripts in all regions of rockfish intestine. The physiological significance of the presence of glutamine synthetase in teleostean intestine is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A,B.
Fig. 2A,B.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Almansa E, Sanchez JJ, Cozzi S, Casariego M, Cejas J, Diaz M (2001) Segmental heterogeneity in the biochemical properties of the Na+-K+-ATPase along the intestine of the gilthead seabream (Sparus aurata L.). J Comp Physiol B 171B:557–567

    Article  Google Scholar 

  • Anderson PM, Walsh PJ (1995) Subcellular localization and biochemical properties of the enzymes of carbamyolphosphate and urea synthesis in the batrachoidid fishes Opsanus beta, Opsanus tau and Porichthys notatus. J Exp Biol 198:755–766

    CAS  PubMed  Google Scholar 

  • Anderson PM. Broderius MA, Fong KC, Tsui KN, Chew SF, Ip YK (2002) Glutamine synthetase expression in liver, muscle, stomach and intestine of Bostrichthys sinensis in response to exposure to a high exogenous ammonia concentration J Exp Biol 205:2053–2065

    Google Scholar 

  • Avisar N, Shiftan L, Ben Dror I, Havazelet N, Vardimon L (1999) A silencer element in the regulatory region of glutamine synthetase controls cell type-specific repression of gene induction by glucocorticoids. J Biol Chem 274:11399–11407

    Article  CAS  PubMed  Google Scholar 

  • Bakke-McKellep AM, Nordrum S, Krogdahl Å, Buddington RK (2000) Absorption of glucose, amino acids, and dipeptides by the intestines of Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 22:33–44

    Article  CAS  Google Scholar 

  • Brown CR, Cameron JN (1991) The induction of specific dynamic action in channel catfish by infusion of essential amino acids. Physiol Zool 64:276–297

    CAS  Google Scholar 

  • Buddington RK, Diamond JM (1987) Pyloric ceca of fish: a "new" absorptive organ. Am J Physiol 252:G65–G76

    CAS  PubMed  Google Scholar 

  • Campbell JW, Smith DD Jr (1992) Metabolic compartmentation of vertebrate glutamine synthetase: putative mitochondrial targeting signal in avian liver glutamine synthetase. Mol Biol Evol 9:787–805

    CAS  PubMed  Google Scholar 

  • Chakraborti PK, Weisbart M, Chakraborti A (1987) The presence of corticosteroid receptor activity in the gills of the brook trout, Salvelinus fontinalis. Gen Comp Endocrinol 66:323–332

    CAS  PubMed  Google Scholar 

  • Chamberlin ME, Glémet HC, Ballantyne JS (1991) Glutamine metabolism in an holostean fish (Amia calva) and a teleost (Salvelinus namaycush). Am J Physiol 260:R159–R166

    CAS  PubMed  Google Scholar 

  • Cooper AJL (1997) Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. Ment Retard Dev Disabil Res Rev 7:280–286

    Article  Google Scholar 

  • Fahrner J, Labruyere WT, Gaunitz C, Moorman AFM, Gebhardt R, Lamers WH (1993) Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver. Eur J Biochem 213:1067–1073

    CAS  PubMed  Google Scholar 

  • Häussinger D, Gerok W, Sies H (1984) Hepatic role in pH-regulation: role of the intercellular glutamine cycle. Trends Biochem Sci 10:301–302

    Google Scholar 

  • Häussinger D, Lamers WH, Moorman AFM (1992) Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93

    PubMed  Google Scholar 

  • Henriksson J, Chi MMY, Hintz CS, Young DA, Kaiser KK, Salmons S, Lowry OH (1986) Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am J Physiol 251:C614–C632

    CAS  PubMed  Google Scholar 

  • James LA, Lunn PG, Elia M (1998) Glutamine metabolism in the gastrointestinal tract of the rat assessed by the relative activities of glutaminase (EC 3.5.1.2) and glutamine synthetase (EC 6.3.1.2). Br J Nutr 79:365–372

    CAS  PubMed  Google Scholar 

  • James MO, Tong Z, Rowland-Faux L, Venugopal CS, Kleinow KM (2001) Intestinal bioavailability and biotransformation of 3-hydroxybenzo(a)pyrene in an isolated perfused preparation from channel catfish, Ictalurus punctatus. Drug Metab Dispos 29:721–728

    CAS  PubMed  Google Scholar 

  • Julsrud EA, Walsh PJ, Anderson PM (1998) N-Acetyl-l-glutamate and the urea cycle in gulf toadfish (Opsanus beta) and other fish. Arch Biochem Biophys 350:55–60

    Article  CAS  PubMed  Google Scholar 

  • Khelil M, Rolland B, Fages C, Tardy M (1990) Glutamine synthetase modulation in astrocyte cultures of different mouse brain areas. Glia 3:75–80

    CAS  PubMed  Google Scholar 

  • Kong H, Kahatapitiya N, Kingsley K, Salo WL, Anderson PM, Wang YS, Walsh PJ (2000) Induction of carbamoyl phosphate synthetase III and glutamine synthetase mRNA during confinement stress in gulf toadfish (Opsanus beta). J Exp Biol 203:311–320

    CAS  PubMed  Google Scholar 

  • Kuo CF, Darnell JE Jr (1989) Mouse glutamine synthetase is encoded by a single gene that can be expressed in a localized fashion. J Mol Biol 208:45–56

    CAS  PubMed  Google Scholar 

  • Laud PR, Campbell JW (1994) Genetic basis for tissue isozymes of glutamine synthetase in elasmobranchs. J Mol Evol 39:93–100

    Google Scholar 

  • Lie-Venema H, Boer PA de, Moorman AF, Lamers WH (1997) Role of the 5' enhancer of the glutamine synthetase gene in its organ-specific expression. Biochem J 323:611–619

    CAS  PubMed  Google Scholar 

  • Lie-Venema H, Hakvoort TB, Hemert FJ van , Moorman AF, Lamers WH (1998) Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. Prog Nucleic Acid Res Mol Biol 61:243–308

    CAS  PubMed  Google Scholar 

  • Miller MS, Buzard GS, McDowell AE (1993) In vivo inhibition of glucocorticoid-inducible gene expression by dimethylnitrosamine in rat liver. Biochem Pharmacol 45:1465–1470

    Article  CAS  PubMed  Google Scholar 

  • Mommsen TP, Walsh PJ (1991) Metabolic and enzymatic heterogeneity in liver of the ureogenic teleost Opsanus beta. J Exp Biol 156:407–418

    CAS  PubMed  Google Scholar 

  • Mommsen TP, Danulat E, Walsh PJ (1992) Metabolic actions of glucagon and dexamethasone in liver of the ureogenic teleost Opsanus beta. Gen Comp Endocrinol 85:316–326

    CAS  PubMed  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Mommsen TP, Osachoff HL, Elliott ME (2003) Metabolic zonation in teleost intestine. Effects of fasting and cortisol in tilapia. J Comp Physiol B (in press)

  • Murray BW, Busby ER, Mommsen TP, Wright PA (2003) Evolution of glutamine synthetase in vertebrates: multiple glutamine synthetase genes expressed in rainbow trout (Oncorhynchus mykiss). J Exp Biol 206:1511–1521

    Google Scholar 

  • O'Banion MK, Young DA, Bohn MC (1994) Corticosterone-responsive mRNAs in primary rat astrocytes. Mol Brain Res 22:57–68

    Article  CAS  PubMed  Google Scholar 

  • Pesole G, Bozzetti MP, Lanave C, Preparata G, Saccone C (1991) Glutamine synthetase gene evolution: a good molecular clock. Proc Natl Acad Sci USA 88:522–526

    CAS  PubMed  Google Scholar 

  • Roig JC, Shenoy VB, Chakrabarti R, Lau JY, Neu J (1995) Localization of rat small intestine glutamine synthetase using immunofluorescence and in situ hybridization. J Parenter Enteral Nutr 19:179–181

    CAS  Google Scholar 

  • Saha N, Ratha BK (1989) Comparative study of ureogenesis in freshwater, air-breathing teleosts. J Exp Zool 252:1–8

    Google Scholar 

  • Sarantos P, Chakrabarti R, Copeland EM, Souba WW (1994) Dexamethasone increases jejunal glutamine synthetase expression via translational regulation. Am J Surg 167:8–13

    CAS  PubMed  Google Scholar 

  • Schor NF (1988) Inactivation of mammalian brain glutamine synthetase by oxygen radicals. Brain Res 456:17–21

    Article  CAS  PubMed  Google Scholar 

  • Shankar RA, Anderson PM (1985) Purification and properties of glutamine synthetase from liver of Squalus acanthias. Arch Biochem Biophys 239:248–259

    CAS  PubMed  Google Scholar 

  • Sire M-F, Vernier J-M (1992) Intestinal absorption of protein in teleost fish. Comp Biochem Physiol 103A:771–781

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    PubMed  Google Scholar 

  • Taylor JS, Van de Peer Y, Braasch I, Meyer A. (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B 365:1661–1671

    Article  Google Scholar 

  • Vijayan MM, Mommsen TP, Glémet HC, Moon TW (1997) Metabolic effects of cortisol in a marine teleost, the sea raven. J Exp Biol 199:1509–1514

    Google Scholar 

  • Walsh PJ (1996) Purification and properties of hepatic glutamine synthetases from the ureotelic gulf toadfish, Opsanus beta. Comp Biochem Physiol 115B:523–532

    CAS  Google Scholar 

  • Walsh PJ, Mommsen TP (2001) Evolutionary considerations of nitrogen metabolism and excretion. In: Randall DJ, Farrell AP (eds) Fish physiology, vol 19. Academic Press, Boca Raton, FL, pp 1–30

  • Walsh PJ, Tucker BC, Hopkins TE (1994) Effects of confinement/crowding on ureogenesis in the Gulf toadfish Opsanus beta. J Exp Biol 191:195–206

    CAS  PubMed  Google Scholar 

  • Walsh PJ, Handel-Fernandez ME, Vincek V (1999) Characterization and sequencing of glutamine synthetase cDNA from liver of the ureotelic gulf toadfish (Opsanus beta). Comp Biochem Physiol 124:251–259

    Article  CAS  Google Scholar 

  • Wang Y, Walsh PJ (2000) High ammonia tolerance in fishes of the family Batrachoididae (toadfish and midshipmen). Aquat Toxicol 50:205–219

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kudoh J, Kubota R, Asakawa S, Minoshima S, Shimizu N (1996) Chromosomal mapping of a family of human glutamine synthetase genes: functional gene (GLUL) on 1q25, pseudogene (GLULP) on 9p13, and three related genes (GLULL1, GLULL2, GLULL3) on 5q33, 11p15, and 11q24. Genomics 37:195–199

    Article  CAS  PubMed  Google Scholar 

  • Webb JT, Brown GW (1980) Glutamine synthetase: assimilatory role in liver as related to urea retention in marine chondrichthyes. Science 208:293–295

    CAS  PubMed  Google Scholar 

  • Weber LP, Lanno RP (2001) Effect of bile salts, lipid, and humic acids on absorption of benzo[a]pyrene by isolated channel catfish (Ictalurus punctatus) intestine segments. Environ Toxicol Chem 20:1117–1124

    CAS  PubMed  Google Scholar 

  • Weiss MD, DeMarco V, Strauss DM, Samuelson DA, Lane ME, Neu J (1999) Glutamine synthetase: a key enzyme for intestinal epithelial differentiation? J Parenter Enteral Nutr 23:140–146

    Google Scholar 

  • Zhang GX, Lai JH, Jia TW, Wang WZ, Wang JY (1997) Effect of epidermal growth factor on glutamine metabolic enzymes in small intestine and skeletal muscle of parenterally fed rats. Nutrition 13:652–655

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Brand A, Richter-Landsberg C, Leibfritz D (1998) Multinuclear NMR spectroscopy studies on NH4Cl-induced metabolic alterations and detoxification processes in primary astrocytes and glioma cells. Dev Neurosci 20:417–426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support through a research grant from NSERC (Canada) to T.P.M. and the Government of British Columbia for a 'First Job in Science' position to J.C.E. We thank Dr. R.H. Devlin (DFO, West Vancouver, Canada) for loaning us an MJ Research thermocycler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Mommsen.

Additional information

Communicated by L.C.-H. Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mommsen, T.P., Busby, E.R., von Schalburg, K.R. et al. Glutamine synthetase in tilapia gastrointestinal tract: zonation, cDNA and induction by cortisol. J Comp Physiol B 173, 419–427 (2003). https://doi.org/10.1007/s00360-003-0350-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-003-0350-z

Keywords

Navigation