Skip to main content
Log in

Which way is up? Asymmetric spectral input along the dorsal–ventral axis influences postural responses in an amphibious annelid

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Medicinal leeches are predatory annelids that exhibit countershading and reside in aquatic environments where light levels might be variable. They also leave the water and must contend with terrestrial environments. Yet, leeches generally maintain a dorsal upward position despite lacking statocysts. Leeches respond visually to both green and near-ultraviolet (UV) light. I used LEDs to test the hypothesis that ventral, but not dorsal UV would evoke compensatory movements to orient the body. Untethered leeches were tested using LEDs emitting at red (632 nm), green (513 nm), blue (455 nm) and UV (372 nm). UV light evoked responses in 100 % of trials and the leeches often rotated the ventral surface away from it. Visible light evoked no or modest responses (12–15 % of trials) and no body rotation. Electrophysiological recordings showed that ventral sensilla responded best to UV, dorsal sensilla to green. Additionally, a higher order interneuron that is engaged in a variety of parallel networks responded vigorously to UV presented ventrally, and both the visible and UV responses exhibited pronounced light adaptation. These results strongly support the suggestion that a dorsal light reflex in the leech uses spectral comparisons across the dorsal–ventral axis rather than, or in addition to, luminance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AA:

Anterior, anterior nerve

APW:

Artificial pond water

CNS:

Central nervous system

DLR:

Dorsal light reflex

DP:

Dorsal, posterior nerve

HD:

High definition

LED:

Light emitting diode

MA:

Median, anterior nerve

ND:

Neutral density

OD:

Optical density

PP:

Posterior, posterior nerve

s#:

Sensillum

UV:

Ultraviolet

References

  • Allen WL, Baddeley R, Cuthill IC, Scott-Samuel NE (2012) A quantitative test of the predicted relationship between countershading and lighting environment. Am Nat 180:762–776

    Article  PubMed  Google Scholar 

  • Arikawa K, Mizuno S, Kinoshita M, Stavenga DG (2003) Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus. J Neurosci 23:4527–4532

    PubMed  CAS  Google Scholar 

  • Arisi I, Zoccolan D, Torre V (2001) Distributed motor pattern underlying whole-body shortening in the medicinal leech. J Neurophysiol 86:2475–2488

    PubMed  CAS  Google Scholar 

  • Baader AP, Kristan WB Jr (1995) Parallel pathways coordinate crawling in the medicinal leech, Hirudo medicinalis. J Comp Physiol A 176:715–726

    Article  PubMed  CAS  Google Scholar 

  • Baca SM, Thomson EE, Kristan WB Jr (2005) Location and intensity discrimination in the leech local bend response quantified using optic flow and principal components analysis. J Neurophysiol 93:3560–3572

    Article  PubMed  Google Scholar 

  • Baylor DA, Hodgkin AL (1973) Detection and resolution of visual stimuli by turtle photoreceptors. J Physiol 234:163–198

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bishop LG, Keehn DG (1967) Neural correlates of the optomotor response in the fly. Kybernetik 6:288–295

    Google Scholar 

  • Bok MJ, Porter ML, Place AR, Cronin TW (2014) Biological sunscreens tune polychromatic ultraviolet vision in mantis shrimp. Curr Biol 24:1636–1642

    Article  PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Burns A (1995) Neuronal factors influencing the decision to swim in the medicinal leech. Neurobiol Learn Mem 63:192–199

    Article  PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Friesen WO (1984) A sensory system initiating swimming activity in the medicinal leech. J Exp Biol 108:341–355

    PubMed  CAS  Google Scholar 

  • Brodsky MC (2002) Dissociated vertical divergence. Perceptual correlates of the human dorsal light reflex. Arch Ophthalmol 120:1174–1178

    Article  PubMed  Google Scholar 

  • Burrell BD, Sahley CL (1998) Generalization of habituation and intrinsic sensitization in the leech. Learn Mem 5:405–419

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burrell BD, Sahley CL (2005) Serotonin mediates learning-induced potentiation of excitability. J Neurophysiol 94:4002–4010

    Article  PubMed  CAS  Google Scholar 

  • Carlton T, McVean A (1993) A comparison of the performance of two sensory systems in host detection and location in the medicinal leech Hirudo medicinalis. Comp Biochem Physiol 104:273–277

    Article  CAS  Google Scholar 

  • Cronin TW, Marshall NJ (1989) A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature 339:137–140

    Article  Google Scholar 

  • Dacke M, Nördstrom P, Scholtz CH (2003) Twilight orientation to polarized light in the crepuscular dung beetle Scarabaeus zambesianus. J Exp Biol 206:1535–1543

    Article  PubMed  Google Scholar 

  • Debski, Friesen WO (1987) Intracellular stimulation of sensory cells elicits swimming activity in the medicinal leech. J Comp Physiol 160:447–457

    Article  CAS  Google Scholar 

  • Deliagina TG, Orlovsky GN, Zelenin PV, Beloozerova IN (2006) Neural bases of postural control. Physiol 21:216–225

    Article  Google Scholar 

  • Derosa YS, Friesen WO (1981) Morphology of leech sensilla: Observations with the scanning electron microscope. Biol Bull 160:383–393

    Article  Google Scholar 

  • Dickinson MH, Lent CM (1984) Feeding behavior of the medicinal leech, Hirudo medicinalis. J Comp Physiol A 154:449–455

    Article  Google Scholar 

  • Döring C, Gosda J, Tessmar-Raible K, Hausen H, Arendt D, Purschke G (2013) Evolution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes - a study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata). Front Zool 10:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Esch T, Kristan WB Jr (2002) Decision-making in the leech nervous system. Integ Comp Biol 42:716–724

    Article  Google Scholar 

  • Fernandez J (1978) Structure of the leech nerve cord: distribution of neurons and organization of fiber pathways. J Comp Neurol 180:165–191

    Article  PubMed  CAS  Google Scholar 

  • Fioravanti R, Fuortes MGF (1972) Analysis of responses in visual cells of the leech. J Physiol 227:173–194

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frank E, Jansen JKS, Rinvik E (1975) A multisomatic axon in the central nervous system of the leech. J Comp Neurol 159:1–13

    Article  PubMed  CAS  Google Scholar 

  • Friesen WO (1981) Physiology of water motion detection in the medicinal leech. J Exp Biol 92:255–275

    PubMed  CAS  Google Scholar 

  • Garcia-Perez E, Zoccolan D, Pinato G, Torre V (2004) Dynamics and reproducibility of a moderately complex sensory-motor response in the medicinal leech. J Neurophysiol 92:1783–1795

    Article  PubMed  Google Scholar 

  • Gardner-Medwin AR, Jansen JKS, Taxt T (1973) The “giant” axon of the leech. Acta Physiol Scand 87:30A–31A

    Google Scholar 

  • Gaudry Q, Kristan WB Jr (2012) Decision points: the factors influencing the decision to feed in the medicinal leech. Front Neurosci 6:1–10

    Article  Google Scholar 

  • Glantz RM, Schroeter JP (2007) Orientation by polarized light in the crayfish dorsal light reflex: behavioral and neurophysiological studies. J Comp Physiol A 193:371–384

    Article  Google Scholar 

  • Glantz RM, Nudelman HB, Waldrop B (1984) Linear integration of convergent visual inputs in an oculomotor reflex pathway. J Neurophysiol 52:1213–1225

    PubMed  CAS  Google Scholar 

  • Govardovskii VI, Calvert PD, Arshavsky VY (2000) Photoreceptor light adaptation: Untangling desensitization and sensitization. J Gen Physiol 116:791–794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harley CM, Cienfuegos J, Wagenaar D (2011) Developmentally regulated multisensory integration for prey localization in the medicinal leech. J Exp Biol 214:3801–3807

    Article  PubMed  Google Scholar 

  • Harley CM, Rossi M, Cienfuegos J, Wagenaar D (2013) Discontinuous locomotion and prey sensing in the leech. J Exp Biol 216:1890–1897

    Article  PubMed  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (1998) Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). J Exp Biol 201:1433–1446

    PubMed  Google Scholar 

  • Hart NS, Lisney TJ, Collin SP (2006) Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity. J Exp Biol 209:4776–4787

    Article  PubMed  Google Scholar 

  • Hughes DA (1966) On the dorsal light response in a mayfly nymph. Anim Behav 14:13–16

    Article  PubMed  CAS  Google Scholar 

  • Hung Y-S, van Kleef JP, Stange G, Ibbotson MR (2012) Spectral inputs and ocellar contributions to a pitch-sensitive descending neuron in the honeybee. J Neurophysiol 109:1202–1213

    Article  PubMed  Google Scholar 

  • Jellies J (2014) Detection and selective avoidance of near ultraviolet radiation by an aquatic annelid: the medicinal leech. J Exp Biol 217:974–985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jellies J, Kueh D (2012) Centrally patterned rhythmic activity integrated by a peripheral circuit linking multiple oscillators. J Comp Physiol A 198:567–582

    Article  Google Scholar 

  • Jellies J, Kopp DM, Johansen K, Johansen J (1996) Initial formation and secondary condensation of nerve pathways in the medicinal leech. J Comp Neurol 373:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kretz JR, Stent GS, Kristan WB Jr (1976) Photosensory input pathways in the medicinal leech. J Comp Physiol A 106:1–37

    Article  Google Scholar 

  • Kristan WB Jr (1982) Sensory and motor neurones responsible for the local bending response in leeches. J Exp Biol 96:161–180

    Google Scholar 

  • Kristan WB Jr, Calabrese RL, Friesen WO (2005) Neuronal control of leech behavior. Prog Neurobiol 76:279–327

    Article  PubMed  Google Scholar 

  • Lall AB, Chapman RM (1973) Phototaxis in Limulus under natural conditions: evidence for reception of near-ultraviolet light in the median ocellus. J Exp Biol 58:213–224

    Google Scholar 

  • Lasansky A, Fuortes MGF (1969) The site of origin of electrical responses in visual cells of the leech, Hirudo medicinalis. J Cell Biol 42:241–252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Laughlin SB (1989) The role of sensory adaptation in the retina. J Exp Biol 146:39–62

    PubMed  CAS  Google Scholar 

  • Laverack MS (1969) Mechanoreceptors, photoreceptors and rapid conduction pathways in the leech, Hirudo medicinalis. J Exp Biol 50:129–140

    PubMed  CAS  Google Scholar 

  • Lewis JE, Kristan WB Jr (1998) Representation of touch localization by a population of leech touch sensitive neurons. J Neurophysiol 80:2584–2592

    PubMed  CAS  Google Scholar 

  • Lisman JE, Brown JE (1975) Light-induced changes of sensitivity in Limulus ventral photoreceptors. J Gen Physiol 66:473–488

    Article  PubMed  CAS  Google Scholar 

  • Lockery SR, Kristan WB Jr (1990) Distributed processing of sensory information in the leech. I. Input-output relations of the local bending reflex. J Neurosci 10:1811–1815

    PubMed  CAS  Google Scholar 

  • Loew ER, Govardovskii VI (2001) Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. Vis Neurosci 18:753–757

    Article  PubMed  CAS  Google Scholar 

  • Magni F, Pellegrino M (1978) Neural mechanisms underlying the segmental and generalized cord shortening reflexes in the leech. J Comp Physiol 124:339–351

    Article  Google Scholar 

  • Mann KH (1962) Leeches (Hirudinea) their structure, physiology, ecology and embryology. Pergamon Press, New York, NY

    Google Scholar 

  • Misell LM, Shaw BK, Kristan WB Jr (1998) Behavioral hierarchy in the medicinal leech, Hirudo medicinalis: feeding as a dominant behavior. Behav Brain Res 90:13–21

    Article  PubMed  CAS  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (1981) Neurobiology of the Leech. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Nicholls JG, Baylor DA (1968) Specific modalities and receptive fields of sensory neurons in the CNS of the leech. J Neurophysiol 31:740–756

    PubMed  CAS  Google Scholar 

  • Nolte J, Brown JE (1972a) Electrophysiological properties of cells in the median ocellus of Limulus. J Gen Physiol 59:167–185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nolte J, Brown JE (1972b) Ultraviolet-induced sensitivity to visible light in ultraviolet receptors of Limulus. J Gen Physiol 59:186–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nolte J, Brown JE, Smith TG Jr (1968) A hyperpolarizing component of the receptor potential in the median ocellus of Limulus. Science 162:677–679

    Article  PubMed  CAS  Google Scholar 

  • Pansopha P, Ando N, Kanzaki R (2014) Dynamic use of optic flow during pheromone tracking by the male silkmoth, Bombyx mori. J Exp Biol 217:1811–1820

    Article  PubMed  Google Scholar 

  • Perlman I, Itzhaki A, Asi H, Alpern M (1998) Field sensitivity action spectra of cone photoreceptors in the turtle retina. J Physiol 511(2):479–494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peterson EL (1984a) Photoreceptors and visual interneurons in the medicinal leech. J Neurobiol 15:413–428

    Article  PubMed  CAS  Google Scholar 

  • Peterson EL (1984b) The fast conducting system of the leech: a network of 93 dye-coupled interneurons. J Comp Physiol A 154:781–788

    Article  Google Scholar 

  • Peterson EL (1985a) Two stages of integration in a leech visual interneuron. J Comp Physiol A 155:543–557

    Article  Google Scholar 

  • Peterson EL (1985b) Visual interneurons in the leech brain II. The anterior visual cells of the supraesophogeal ganglion. J Comp Physiol A 156:707–717

    Article  Google Scholar 

  • Peterson EL (1985c) Visual interneurons in the leech brain III. The unpaired H cell. J Comp Physiol A 156:719–727

    Article  Google Scholar 

  • Piccoli G, del Pilar Gomez M, Nasi E (2002) Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors. J Physiol 543(2):481–494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Powers MK (1978) Light-adapted spectral sensitivity of the goldfish: a reflex measure. Vis Res 18:1131–1136

    Article  PubMed  CAS  Google Scholar 

  • Preuss T, Budelmann BU (1995) A dorsal light reflex in a squid. J Exp Biol 198:1157–1159

    PubMed  CAS  Google Scholar 

  • Ramirez MD, Speiser DI, Pankey MS, Oakley TH (2011) Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Vis Neurosci 28:265–279

    Article  PubMed  Google Scholar 

  • Rossignol S (1996) Visuomotor regulation of locomotion. Can J Physiol Pharmacol 74:418–425

    Article  PubMed  CAS  Google Scholar 

  • Rossignol S, Dubuc R, Gossard J-P (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  • Rowland HM (2009) From Abbott Thayer to the present day: what have we learned about the function of countershading? Phil Trans R Soc B 364:519–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahley CL, Modney BK, Boulis NM, Muller KJ (1994) The S cell: an interneuron essential for sensitization and full dishabituation of leech shortening. J Neurosci 14:6715–6721

    PubMed  CAS  Google Scholar 

  • Sawyer RT (1986) Leech biology and behaviour: feeding biology, ecology and systematics. Clarendon Press, Oxford

    Google Scholar 

  • Schluter E (1933) Die Bedeutung des Centralnervensystems von Hirudo medicinalis für Locomotion und Raumorientierung. Z wiss Zool 143:538–593

    Google Scholar 

  • Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH (2014) Cellular mechanisms for integral feedback in visually guided behavior. Proc Nat Acad 111:5700–5705

    Article  CAS  Google Scholar 

  • Schuster S, Machnik P, Schulze W (2011) Behavioral assessment of the visual capabilities of fish. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 1. Academic Press, CA, pp 143–149

    Chapter  Google Scholar 

  • Shaw BK, Kristan WB Jr (1995) The whole-body shortening reflex of the medicinal leech: motor pattern, sensory basis, and interneuronal pathways. J Comp Physiol A 177:667–681

    Article  PubMed  CAS  Google Scholar 

  • Shaw BK, Kristan WB Jr (1997) The neuronal basis of behavioral choice between swimming, shortening in the leech; control is not selectively exercised at higher circuit levels. J Neurosci 17:786–795

    PubMed  CAS  Google Scholar 

  • Shaw BK, Kristan WB Jr (1999) Relative roles of the S cell network and parallel interneuronal pathways in the whole-body shortening reflex of the medicinal leech. J Neurophysiol 82:1114–1123

    PubMed  CAS  Google Scholar 

  • Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS III (2007) Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis. Proc Biol Sci 274:1481–1487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srebro R, Behbehani M (1974) Light adaptation in the ventral photoreceptor of Limulus. J Gen Physiol 64:166–185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stange G, Howard J (1979) An ocellar dorsal light response in a dragonfly. J Exp Biol 83:351–355

    Google Scholar 

  • Stavenga DG, Hardie RC (2011) Metarhodopsin control by arrestin, light-filtering screening pigments, and visual turnover in invertebrate microvillar photoreceptors. J Comp Physiol A 197:227–241

    Article  CAS  Google Scholar 

  • Stavn RH (1970) The application of the dorsal light reaction for orientation in water currents by Daphnia magna Straus. Z vergl Physiol 70:349–362

    Article  Google Scholar 

  • Thoen HH, How MJ, Chiou T-H, Marshall J (2014) A different form of color vision in mantis shrimp. Science 343:411–413

    Article  PubMed  CAS  Google Scholar 

  • Thomson EE, Kristan WB (2006) Encoding and decoding touch sensitive location in the leech CNS. J Neurosci 26:8009–8016

    Article  PubMed  CAS  Google Scholar 

  • Ullén F, Deliagina TG, Orlovsky GN, Grillner S (1995) Spatial orientation in the lamprey II. Visual influence on orientation during locomotion in the attached state. J Exp Biol 198:675–681

    Google Scholar 

  • Ullén F, Deliagina TG, Orlovsky GN, Grillner S (1997) Visual pathways for postural control and negative phototaxis in lamprey. J Neurophysiol 78:960–976

    PubMed  Google Scholar 

  • von Holst E (1950) Die Tätigkeit des Statolithenapparates im Wirbeltierlabyrinth. Naturwissenschaften 37:265–272

    Article  Google Scholar 

  • Walz B (1982) Ca2+ sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining and in situ Ca2+ accumulation. J Cell Biol 93:839–848

    Article  PubMed  CAS  Google Scholar 

  • Weeks JC (1981) Neuronal basis of leech swimming: separation of swim initiation, pattern generation and intersegmental coordination by selective lesions. J Neurophysiol 45:698–723

    PubMed  CAS  Google Scholar 

  • Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zoccolan D, Torre V (2002) Using optical flow to characterize sensory-motor interactions in a segment of the medicinal leech. J Neurosci 22:2283–2298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Faculty Research and Creative Activities Award from the Office of the Vice President for Research at Western Michigan University (W2013-007). I thank Dr. Kevin Blair for his expert knowledge and assistance in examining the spectral and power outputs of LEDs and Dr. Daniel Kueh for advice on statistical analyses. I also thank 2 anonymous reviewers for many helpful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Jellies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jellies, J. Which way is up? Asymmetric spectral input along the dorsal–ventral axis influences postural responses in an amphibious annelid. J Comp Physiol A 200, 923–938 (2014). https://doi.org/10.1007/s00359-014-0935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0935-x

Keywords

Navigation