Skip to main content

Advertisement

Log in

Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca2+ imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca2+ signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca2+ transients and spontaneous Ca2+ oscillations in the somata of olfactory receptor neurons. Both Ca2+ signals are primarily mediated by an influx of extracellular Ca2+ through voltage-activated Ca2+ channels that can be blocked by CoCl2 and the L-type Ca2+ channel blocker verapamil. Intracellular Ca2+ stores contribute little to odorant-induced Ca2+ transients and spontaneous Ca2+ oscillations. The odorant-induced Ca2+ transients as well as the spontaneous Ca2+ oscillations depend on action potentials mediated by Na+ channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca2+ transients and spontaneous Ca2+ oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca2+ signals represent experimentally accessible proxies of spiking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ΔF/F :

Relative change in fluorescence intensity

NMDG:

N-methyl-d-glucamine

OGB:

Oregon Green 488 BAPTA-1 AM

ORN:

Olfactory receptor neuron

SERCA:

Sarco/endoplasmic reticulum Ca2+ ATPase pump

TM:

TetraMarine extract

TTX:

Tetrodotoxin

References

  • Anderson PAV, Ache BW (1985) Voltage- and current-clamp recordings of the receptor potential in olfactory receptor cells in situ. Brain Res 338:273–280

    CAS  PubMed  Google Scholar 

  • Arnson HA, Holy TE (2011) Chemosensory burst coding by mouse vomeronasal sensory neurons. J Neurophysiol 106:409–420

    PubMed  Google Scholar 

  • Bazaes A, Schmachtenberg O (2012) Odorant tuning of olfactory crypt cells from juvenile and adult rainbow trout. J Exp Biol 215:1740–1748

    CAS  PubMed  Google Scholar 

  • Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22:10277–10290

    CAS  PubMed  Google Scholar 

  • Bobkov YV, Ache BW (2007) Intrinsically bursting olfactory receptor neurons. J Neurophysiol 97:1052–1057

    CAS  PubMed  Google Scholar 

  • Bobkov Y, Park I, Ukhanov K, Principe J, Ache B (2012) Cellular basis for response diversity in the olfactory periphery. PLoS ONE 7:e34843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bozza TC, Kauer JS (1998) Odorant response properties of convergent olfactory receptor neurons. J Neurosci 18:4560–4569

    CAS  PubMed  Google Scholar 

  • Bräu ME, Vogel W, Hempelmann G (1998) Fundamental properties of local anesthetics: half-maximal blocking concentrations for tonic block of Na+ and K+ channels in peripheral nerve. Anesth Analg 87:885–889

    PubMed  Google Scholar 

  • Bräu ME, Dreimann M, Olschewski A, Vogel W, Hempelmann G (2001) Effects of drugs used for neuropathic pain management on tetrodotoxin-resistant Na+ currents in rat sensory neurons. Anesthesiology 94:137–144

    PubMed  Google Scholar 

  • Breuer W, Epsztejn S, Millgram P, Cabantchik IZ (1995) Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol Cell Physiol 268:C1354–C1361

    CAS  Google Scholar 

  • Carey AF, Wang G, Su C-Y, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carr WES (1990) Chemical signaling systems in lower organisms: a prelude to the evolution of chemical communication in the nervous system. In: Anderson PAV (ed) Evolution of the first nervous systems. Plenum Press, New York, pp 81–94

    Google Scholar 

  • Carr WES, Gleeson RA, Trapido-Rosenthal HG (1989) Chemosensory systems in lower organisms: correlations with internal receptor systems for neurotransmitters and hormones. Adv Comp Environ Comp Physiol 5:25–52

    Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005a) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    CAS  PubMed  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005b) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    CAS  PubMed  Google Scholar 

  • Chrachri A (1995) Ionic currents in identified swimmeret motor neurones of the crayfish Pacifastacus leniusculus. J Exp Biol 198:1483–1492

    PubMed  Google Scholar 

  • De Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    PubMed  Google Scholar 

  • Derby CD, Cate HS, Gentilcore LR (1997) Perireception in olfaction: molecular mass sieving by aesthetasc sensillar cuticle determines odorant access to receptor sites in the Caribbean spiny lobster Panulirus argus. J Exp Biol 200:2073–2081

    CAS  PubMed  Google Scholar 

  • Dionne VE (1992) Chemosensory responses in isolated olfactory receptor neurons from Necturus maculosus. J Gen Physiol 99:415–434

    CAS  PubMed  Google Scholar 

  • Duchamp-Viret P, Chaput MA, Duchamp A (1999) Odor response properties of rat olfactory receptor neurons. Science 284:2171–2174

    CAS  PubMed  Google Scholar 

  • Duchamp-Viret P, Duchamp A, Chaput MA (2000) Peripheral odor coding in the rat and frog: quality and intensity specification. J Neurosci 20:2383–2390

    CAS  PubMed  Google Scholar 

  • Dupont G, Combettes L, Bird GS, Putney JW (2011) Calcium oscillations. Cold Spring Harbor Perspec Biol 3:a004226

    Google Scholar 

  • Elsaesser R, Montani G, Tirindelli R, Paysan J (2005) Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci 21:2692–2700

    PubMed  Google Scholar 

  • Faber ESL, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181–194

    CAS  PubMed  Google Scholar 

  • Fairhurst AS, Hasselbach W (1970) Calcium efflux from a heavy sarcotubular fraction. Effects of ryanodine, caffeine and magnesium. Eur J Biochem 13:504–509

    CAS  PubMed  Google Scholar 

  • Firestein S, Werblin FS (1987) Gated currents in isolated olfactory receptor neurons of the larval tiger salamander. Proc Natl Acad Sci USA 84:6292–6296

    CAS  PubMed  Google Scholar 

  • Fozzard HA, Lee PJ, Lipkind GM (2005) Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr Pharmaceut Design 11:2671–2686

    CAS  Google Scholar 

  • Galizia CG, Münch D, Strauch M, Nissler A, Ma S (2010) Integrating heterogeneous odor response data into a common response model: a DoOR to the complete olfactome. Chem Senses 35:551–563

    CAS  PubMed  Google Scholar 

  • Gao Z, Chen M, Collins HW, Matschinsky FM, Lee VM, Wolf BA (1998) Mechanisms of spontaneous cytosolic Ca2+ transients in differentiated human neuronal cells. Eur J Neurosci 10:2416–2425

    CAS  PubMed  Google Scholar 

  • Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol 502:13–30

    CAS  PubMed  Google Scholar 

  • Gautam SH, Otsuguro K, Ito S, Saito T, Habara Y (2007) T-type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons. Neuroscience 144:702–713

    CAS  PubMed  Google Scholar 

  • Gliem S, Schild D, Manzini I (2009) Highly specific responses to amine odorants of individual olfactory receptor neurons in situ. Eur J Neurosci 29:2315–2326

    CAS  PubMed  Google Scholar 

  • Göbel W, Helmchen F (2007) In vivo calcium imaging of neural network function. Physiology 22:265–358

    Google Scholar 

  • Gomez G, Lischka FW, Haskins ME, Rawson NE (2005) Evidence for multiple calcium response mechanisms in mammalian olfactory receptor neurons. Chem Senses 30:317–326

    CAS  PubMed  Google Scholar 

  • Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405

    CAS  PubMed  Google Scholar 

  • Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    CAS  PubMed  Google Scholar 

  • Grünert U, Ache BW (1988) Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster, Panulirus argus. Cell Tissue Res 251:95–103

    Google Scholar 

  • Guo X, Castle NA, Chernoff DM, Strichartz GR (1991) Comparative inhibition of voltage-gated cation channels by local anesthetics. Ann NY Acad Sci 625:181–198

    CAS  PubMed  Google Scholar 

  • Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979

    CAS  PubMed  Google Scholar 

  • Hassenklöver T, Pallesen LP, Schild D, Manzini I (2012) Amino acid- vs. peptide-odorants: responses of individual olfactory receptor neurons in an aquatic species. PLoS ONE 7:e53097

    PubMed Central  PubMed  Google Scholar 

  • Hatt H, Ache BW (1994) Cyclic nucleotide- and inositol phosphate-gated ion channels in lobster olfactory receptor neurons. Proc Natl Acad Sci USA 91:6264–6268

    CAS  PubMed  Google Scholar 

  • Kang J, Caprio J (1995) In vivo responses of single olfactory receptor neurons in the channel catfish, Ictalurus punctatus. J Neurophysiol 73:172–177

    CAS  PubMed  Google Scholar 

  • Kawai T, Abe H, Wakabayashi K, Oka Y (2009) Calcium oscillations in the olfactory nonsensory cells of the goldfish, Carassius auratus. Biochim Biophys Acta 1790:1681–1688

    CAS  PubMed  Google Scholar 

  • Laver DR, van Helden DF (2011) Three independent mechanisms contribute to tetracaine inhibition of cardiac calcium release channels. J Mol Cell Cardiol 51:357–369

    CAS  PubMed  Google Scholar 

  • LeChasseur Y, Dufour S, Lavertu G, Bories C, Deschenes M, Vallee R, De Koninck Y (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325

    CAS  PubMed  Google Scholar 

  • Leech D, Rechnitz GA (1993) Neuronal-based assay and detection of local anesthetics using electrically stimulated crayfish walking leg nerves. Anal Lett 26:1259–1279

    CAS  Google Scholar 

  • Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F (1997) Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 17:4136–4148

    CAS  PubMed  Google Scholar 

  • Leinders-Zufall T, Greer CA, Shepherd GM, Zufall F (1998) Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J Neurosci 18:5630–5639

    CAS  PubMed  Google Scholar 

  • Lin B-J, Chen TW, Schild D (2007) Cell type-specific relationships between spiking and [Ca2+]i in neurons of the Xenopus tadpole olfactory bulb. J Physiol 582:163–175

    CAS  PubMed  Google Scholar 

  • Lüders AK, Saborowski R, Bickmeyer U (2009) Inhibition of multidrug/xenobiotic resistance transporter by MK571 improves dye (Fura 2) accumulation in crustacean tissues from lobster, shrimp, and isopod. Comp Biochem Physiol C Toxicol Pharmacol 150:368–371

    PubMed  Google Scholar 

  • Ma M, Shepherd GM (2000) Functional mosaic organization of mouse olfactory receptor neurons. Proc Natl Acad Sci USA 97:12869–12874

    CAS  PubMed  Google Scholar 

  • Mandal A, Arunachalam SC, Meleshkevitch EA, Mandal PK, Boudko DY, Ahearn GA (2009) Cloning of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) from Caribbean spiny lobster Panulirus argus. J Comp Physiol B 179:205–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews HR, Reisert J (2003) Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol 13:469–475

    CAS  PubMed  Google Scholar 

  • McClintock TS, Ache BW (1989a) Hyperpolarizing receptor potentials in lobster olfactory receptor cells: implications for transduction and mixture suppression. Chem Senses 14:637–647

    Google Scholar 

  • McClintock TS, Ache BW (1989b) Ionic currents and ion channels of lobster olfactory receptor neurons. J Gen Physiol 94:1085–1099

    CAS  PubMed  Google Scholar 

  • McPhersonx PS, Kim Y-K, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronadot R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25

    Google Scholar 

  • Menini A (1999) Calcium signalling and regulation in olfactory neurons. Curr Opin Neurobiol 9:419–426

    CAS  PubMed  Google Scholar 

  • Meyers DER, Graf RA, Cooke IM (1992) Ionic currents of morphologically distinct peptidergic neurons in defined culture. J Neurophysiol 67:1301–1315

    CAS  PubMed  Google Scholar 

  • Michel WC, Ache BW (1994) Odor-evoked inhibition in primary olfactory receptor neurons. Chem Senses 19:11–24

    CAS  PubMed  Google Scholar 

  • Michel WC, McClintock TS, Ache BW (1991) Inhibition of lobster olfactory receptor cells by an odor- activated potassium conductance. J Neurophysiol 65:446–453

    CAS  PubMed  Google Scholar 

  • Michelangeli F, East JM (2011) The diversity of SERCA Ca2+ pump inhibitors. Biochem Soc Trans 39:789–797

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Restrepo D, Teeter JH (1992) Voltage-dependent and odorant-regulated currents in isolated olfactory receptor neurons of the channel catfish. J Gen Physiol 99:505–530

    CAS  PubMed  Google Scholar 

  • Moreaux L, Laurent G (2007) Estimating firing rates from calcium signals in locust projection neurons in vivo. Frontiers Neural Circuits 1:2

    Google Scholar 

  • Moreaux L, Laurent G (2008) A simple method to reconstruct firing rates from dendritic calcium signals. Frontiers Neurosci 2:2

    Google Scholar 

  • Murmu MS, Stinnakre J, Martin J-R (2010) Presynaptic Ca2+ stores contribute to odor-induced responses in Drosophila olfactory receptor neurons. J Exp Biol 213:4163–4173

    CAS  PubMed  Google Scholar 

  • Nakagawa-Inoue A, Kawahara S, Kirino Y, Sekiguchi T (1998) Odorant-evoked increase in cytosolic free calcium in cultured antennal neurons of blowflies. Zool Sci 15:661–666

    CAS  Google Scholar 

  • Nara K, Saraiva LR, Ye X, Buck LB (2011) A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci 31:9179–9191

    CAS  PubMed  Google Scholar 

  • Narusuye K, Kawai F, Miyachi E (2003) Spike encoding of olfactory receptor cells. Neurosci Res 46:407–413

    CAS  PubMed  Google Scholar 

  • Nikonov AA, Caprio J (2007) Highly specific olfactory receptor neurons for types of amino acids in the channel catfish. J Neurophysiol 98:1909–1918

    CAS  PubMed  Google Scholar 

  • Onetti CG, Garcia U, Valdiosera RF, Arechiga H (1990) Ionic currents in crustacean neurosecretory cells. J Neurophysiol 64:1514–1526

    CAS  PubMed  Google Scholar 

  • Oyama Y, Sadoshima J-I, Tokutomi N, Akaike N (1988) Some properties of inhibitory action of lidocaine on the Ca2+ current of single isolated frog sensory neurons. Brain Res 442:223–228

    CAS  PubMed  Google Scholar 

  • Parri HR, Crunelli V (2003) The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience 120:979–992

    CAS  PubMed  Google Scholar 

  • Pelz D, Roeske T, Syed Z, De Bruyne M, Galizia CG (2006) The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). J Neurobiol 66:1544–1563

    CAS  PubMed  Google Scholar 

  • Piper DR, Lucero MT (1999) Calcium signaling in squid olfactory receptor neurons. Biol Signals Recept 8:329–337

    CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci USA 93:9270–9275

    CAS  PubMed  Google Scholar 

  • Rajendra S, Lynch JW, Barry PH (1992) An analysis of Na+ currents in rat olfactory receptor neurons. Pflügers Arch Eur J Physiol 420:342–346

    CAS  Google Scholar 

  • Rawson NE, Gomez G, Cowart B, Brand JG, Lowry LD, Pribitkin EA, Restrepo D (1997) Selectivity and response characteristics of human olfactory neurons. J Neurophysiol 77:1606–1613

    CAS  PubMed  Google Scholar 

  • Restrepo D, Teeter JH (1990) Olfactory neurons exhibit heterogeneity in depolarization-induced calcium changes. Am J Physiol Cell Physiol 258:C1051–C1061

    CAS  Google Scholar 

  • Restrepo D, Miyamoto T, Bryant BP, Teeter JH (1990) Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science 249:1166–1168

    CAS  PubMed  Google Scholar 

  • Restrepo D, Okada Y, Teeter JH, Lowry LD, Cowart B, Brand JG (1993a) Human olfactory neurons respond to odor stimuli with an increase in cytoplasmatic Ca2+. Biophys J 64:1961–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Restrepo D, Okada Y, Teeter JH (1993b) Odorant-regulated Ca2+ gradients in rat olfactory neurons. J Gen Physiol 102:907–924

    CAS  PubMed  Google Scholar 

  • Revial MF, Duchamp A, Holley A (1978) Odour discrimination by frog olfactory receptors: a second study. Chem Senses Flavor 3:7–21

    CAS  Google Scholar 

  • Rospars JP, Lansky P, DuchampViret P, Duchamp A (2000) Spiking frequency versus odorant concentration in olfactory receptor neurons. BioSystems 58:133–141

    CAS  PubMed  Google Scholar 

  • Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466

    CAS  PubMed  Google Scholar 

  • Schmidt M, Mellon D (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer Science + Business Media, LLC., New York, pp 123–147

    Google Scholar 

  • Schmidt M, Tadesse T, Derby CD (2010) Ca imaging of response properties of olfactory receptor neurons of spiny lobsters, Panulirus argus. Chem Senses 35:A65

    Google Scholar 

  • Schmiedel-Jakob I, Anderson PAV, Ache BW (1989) Whole cell recording from lobster olfactory receptor cells: responses to current and odor stimulation. J Neurophysiol 61:994–1000

    CAS  PubMed  Google Scholar 

  • Schmiedel-Jakob I, Michel WC, Anderson PAV, Ache BW (1990) Whole cell recording from lobster olfactory receptor cells: multiple ionic bases for the receptor potential. Chem Senses 15:397–405

    CAS  Google Scholar 

  • Shaham S (2010) Chemosensory organs as models of neuronal synapses. Nat Rev Neurosci 11:212–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steullet P, Cate HS, Derby CD (2000) A spatiotemporal wave of turnover and functional maturation of olfactory receptor neurons in the spiny lobster Panulirus argus. J Neurosci 20:3282–3294

    CAS  PubMed  Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    CAS  PubMed  Google Scholar 

  • Tadesse T, Schmidt M, Derby CD (2011) Calcium imaging of olfactory receptor neurons in the spiny lobster, Panulirus argus. Soc Neurosci Abstr 37(573):01

    Google Scholar 

  • Tareilus E, Noe J, Breer H (1995) Calcium signals in olfactory neurons. Biochim Biophys Acta 1269:129–138

    PubMed  Google Scholar 

  • Taylor CW, Broad LM (1998) Pharmacological analysis of intracellular Ca2+ signalling: problems and pitfalls. Trends Pharmacol Sci 19:370–375

    CAS  PubMed  Google Scholar 

  • Ukhanov K, Bobkov Y, Ache BW (2011) Imaging ensemble activity in arthropod olfactory receptor neurons in situ. Cell Calcium 49:100–107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–329

    CAS  PubMed  Google Scholar 

  • Vielma A, Ardiles A, Delgado L, Schmachtenberg O (2008) The elusive crypt olfactory receptor neuron: evidence for its stimulation by amino acids and cAMP pathway agonists. J Exp Biol 211:2417–2422

    CAS  PubMed  Google Scholar 

  • Vogler C, Schild D (1999) Inhibitory and excitatory responses of olfactory receptor neurons of Xenopus laevis tadpoles to stimulation with amino acids. J Exp Biol 202:997–1003

    CAS  PubMed  Google Scholar 

  • Zanotti S, Charles A (1997) Extracellular calcium sensing by glial cells: low extracellular calcium induces intracellular calcium release and intercellular signaling. J Neurochem 69:594–602

    CAS  PubMed  Google Scholar 

  • Zhainazarov AB, Ache BW (1997) Gating and conduction properties of a sodium-activated cation channel from lobster olfactory receptor neurons. J Membr Biol 156:173–190

    CAS  PubMed  Google Scholar 

  • Zufall F, Leinders-Zufall T, Greer CA (2000) Amplification of odor-induced Ca2+ transients by store- operated Ca2+ release and its role in olfactory signal transduction. J Neurophysiol 83:501–512

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH DC00312, GSU Dissertation Grant and GSU Brains and Behavior fellowship to TT, and GSU Brains & Behavior seed grants to MS and CD. We thank Drs. Juan Aggio and Remus Osan for help with data analysis and statistics, Dr. Vincent Rehder for help with the initial setup of Ca2+ imaging, Drs. Yuriy Bobkov and Kirill Ukhanov (Whitney Laboratory, University of Florida) for helpful suggestions regarding the loading of antennule slices with Ca2+ indicator dyes, and Jessica Haulk for assistance with data organization. We thank Drs. Timothy McClintock, Phang C. Tai, and William Walthall for comments on the manuscript. All experiments are in accordance with the current laws on animal experimentation and care in the USA and the guidelines set by Georgia State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadesse, T., Derby, C.D. & Schmidt, M. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus . J Comp Physiol A 200, 53–76 (2014). https://doi.org/10.1007/s00359-013-0861-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0861-3

Keywords

Navigation