Skip to main content
Log in

Insect–machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

To elucidate the dynamic information processing in a brain underlying adaptive behavior, it is necessary to understand the behavior and corresponding neural activities. This requires animals which have clear relationships between behavior and corresponding neural activities. Insects are precisely such animals and one of the adaptive behaviors of insects is high-accuracy odor source orientation. The most direct way to know the relationships between neural activity and behavior is by recording neural activities in a brain from freely behaving insects. There is also a method to give stimuli mimicking the natural environment to tethered insects allowing insects to walk or fly at the same position. In addition to these methods an ‘insect–machine hybrid system’ is proposed, which is another experimental system meeting the conditions necessary for approaching the dynamic processing in the brain of insects for generating adaptive behavior. This insect–machine hybrid system is an experimental system which has a mobile robot as its body. The robot is controlled by the insect through its behavior or the neural activities recorded from the brain. As we can arbitrarily control the motor output of the robot, we can intervene at the relationship between the insect and the environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

BE:

Brief excitation

BMHS:

Brain–machine hybrid system

CN:

Cervical nerve

FF:

Flip-flop activity

ΔILPC:

Delta area of inferior lateral protocerebrum

LAL:

Lateral accessory lobe

LPC:

Lateral protocerebrum

MGC:

Macroglomerular complex

NMN:

Neck motor neuron

OG:

Ordinary glomerulus

ORN:

Olfactory receptor neuron

PC:

Protocerebrum

PN:

Projection neuron

SMP:

Superior medial protocerebrum

VPC:

Ventral protocerebrum

References

  • Ando N, Emoto S, Kanzaki R (2013) Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay. Bioinspir Biomim 8(1):016008. doi:10.1088/1748-3182/8/1/016008

    Article  PubMed  CAS  Google Scholar 

  • Baker TC (1990) Upwind flight and casting flight: complementary phasic and tonic system used for location of sex pheromone sources by male moth. In: Døving KB (ed) Proceedings of the tenth international symposium on olfaction and taste. Oslo, Norway, pp 18–25

    Google Scholar 

  • Baker TC, Kuenen LPS (1982) Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216:424–426

    Article  PubMed  CAS  Google Scholar 

  • Baker TC, Willis MA, Phelan PL (1984) Optomotor anemotaxis polarizes self-steered zigzagging in flying moths. Physiol Entomol 9:365–376

    Article  Google Scholar 

  • Berry RP, Ibbotson MR (2010) A three-dimensional atlas of the honeybee neck. PLoS One 5(5):e10771. doi:10.1371/journal.pone.0010771

    Article  PubMed  Google Scholar 

  • Butala J, Arkles A, Gray JR (2007) EMG spike time difference based feedback control. Conf Proc IEEE Eng Med Biol Soc 2007:6130–6133. doi:10.1109/IEMBS.2007.4353748

    PubMed  Google Scholar 

  • Butenandt VA, Beckmann R, Stamm D, Hecker E (1959) Uber den sexual-lockstoff des seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284

    Google Scholar 

  • Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34:854–866. doi:10.1007/s10886-008-9484-5

    Article  PubMed  Google Scholar 

  • Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173:385–399

    Article  PubMed  CAS  Google Scholar 

  • Christensen TA, Waldrop BR, Hildebrand JG (1998) Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons. J Neurosci 18:5999–6008

    PubMed  CAS  Google Scholar 

  • Diorio C, Mavoori J (2003) Computer electronics meet animal brains. Computer 36:69–75

    Article  Google Scholar 

  • Dombrowski UJ, Milde JJ, Wendler G (1990) Visual control of compensatory head movements in the sphinx moth. In: Popov AV (ed) Sensory systems and communication in arthropods. Birkhäuser Basel, pp 127–133

  • Eaton JL (1974) Nervous system of the head and thorax of the adult tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). Int J Insect Morphol Embryol 3:47–66

    Article  Google Scholar 

  • Ejaz N, Peterson KD, Krapp HG (2011) An experimental platform to study the closed-loop performance of brain-machine interfaces. J Vis Exp 49:e1677. doi:10.3791/1677

    Google Scholar 

  • Emoto S, Ando N, Takahashi H, Kanzaki R (2007) Insect-controlled robot—evaluation of adaptation ability. J Robot Mechatron 19:436–443

    Google Scholar 

  • Farkas SR, Shorey HH (1972) Chemical trail-following by flying insects: a mechanism for orientation to a distant odor source. Science 178:67–68

    Article  PubMed  CAS  Google Scholar 

  • Fukushima R, Kanzaki R (2009) Modular subdivision of mushroom bodies by Kenyon cells in the silkmoth. J Comp Neurol 513:315–330

    Article  PubMed  Google Scholar 

  • Gatellier L, Nagao T, Kanzaki R (2004) Serotonin modifies the sensitivity of the male silkmoth to pheromone. J Exp Biol 207:2487–2496. doi:10.1242/jeb.01035

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Gronenberg W, Strausfeld NJ (1995) Oculomotor control in Calliphorid flies: head movement during activation and inhibition of neck motor neurons corroborate neuroanatomical predictions. J Comp Neurol 361:285–297

    Article  PubMed  CAS  Google Scholar 

  • Gray JR, Pawlowski V, Willis MA (2002) A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J Neurosci Methods 120:211–223

    Article  PubMed  Google Scholar 

  • Gronenberg W, Strausfeld NJ (1991) Descending pathway connecting the male specific visual system of flies to the neck and flight motor. J Comp Physiol A 169:413–426

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W, Milde JJ, Strausfeld NJ (1995) Oculomotor control in calliphorid flies: organization of descending neurons responding to visual stimuli. J Comp Neurol 361:267–284

    Article  PubMed  CAS  Google Scholar 

  • Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tache F, Said I, Durier V, Canonge S, Ame JM, Detrain C, Correll N, Martinoli A, Mondada F, Siegwart R, Deneubourg JL (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science 318:1155–1158

    Article  PubMed  CAS  Google Scholar 

  • Haupt SS, Sakurai T, Namiki S, Kazawa T, Kanzaki R (2009) Olfactory information processing in moths Chapter 3. In: Mennini A (ed) The neurobiology of Olfaction. CRC Press, San Francisco, pp 71–112

    Chapter  Google Scholar 

  • Hedwig B, Poulet JFA (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430(7001):781–785. doi:s10.1038/Nature02787

    Article  PubMed  CAS  Google Scholar 

  • Hill ES, Iwano M, Gatellier L, Kanzaki R (2002) Morphology and physiology of the serotonin-immunoreactive putative antennal lobe feedback neuron in the male silkmoth Bombyx mori. Chem Senses 27:475–483

    Article  PubMed  Google Scholar 

  • Hill ES, Okada K, Kanzaki R (2003) Visualization of modulatory effects of serotonin in the silkmoth antennal lobe. J Exp Biol 206:345–352. doi:10.1242/jeb.00080

    Article  PubMed  CAS  Google Scholar 

  • Hung YS, van Kleef JP, Ibbotson MR (2011) Visual response properties of neck motor neurons in the honeybee. J Comp Physiol A 197:1173–1187. doi:10.1007/s00359-011-0679-9

    Article  Google Scholar 

  • Huston SJ, Krapp HG (2008) Visuomotor transformation in the fly gaze stabilization system. PLoS Biol 6(7):e173. doi:10.1371/journal.pbio.0060173

    Article  PubMed  Google Scholar 

  • Ikeno H, Kazawa T, Namiki S, Miyamoto D, SatoY, Haupt S, Nishikawa I, Kanzaki R (2012) Development of a scheme and tools to construct a standard moth brain for neural network simulations. Comput Intell Neurosci. doi:10.1155/2012/795291

  • Ishida H, Hayashi K, Takakusaki M, Nakamoto T, Moriizumi T, Kanzaki R (1996) Odour-source localization system mimicking behaviour of silkworm moth. Sens Actuat A 51:225–230

    Article  Google Scholar 

  • Iwano M, Kanzaki R (2005) Immunocytochemical identification of neuroactive substances in the antennal lobe of the male silkworm moth Bombyx mori. Zool Sci 22:199–211

    Article  PubMed  CAS  Google Scholar 

  • Iwano M, Hill ES, Mori A, Mishima T, Mishima T, Ito K, Kanzaki R (2010) Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain. J Comp Neurol 518:366–388. doi:10.1002/cne.22224

    Article  PubMed  Google Scholar 

  • Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory physiology IV. Springer, Berlin, pp 351–431

    Google Scholar 

  • Kanzaki R (1998) Coordination of wing motion and walking suggests common control of zigzag motor program in a male silkworm moth. J Comp Physiol A 182(3):267–276. doi:10.1007/s003590050177

    Article  Google Scholar 

  • Kanzaki R, Mishima T (1996) Pheromone-triggered ‘flipflopping’ neural signals correlate with activities of neck motor neurons of a male moth, Bombyx mori. Zool Sci 13:79–87

    Article  CAS  Google Scholar 

  • Kanzaki R, Sugi N, Shibuya T (1992) Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci 9:515–527

    Google Scholar 

  • Kanzaki R, Ikeda S, Shibuya T (1994) Morphological and physiological properties of pheromone-triggered flipflopping descending interneurons of the male silkworm moth, Bombyx mori. J Comp Physiol A 175:1–14

    Article  CAS  Google Scholar 

  • Kanzaki R, Soo K, Seki Y, Wada S (2003) Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth. Chem Senses 28:113–130

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki R, Nagasawa S, Shimoyama I (2005) Neural basis of odor-source searching behavior in insect brain systems evaluated with a mobile robot. Chem Senses 30(suppl 1):i285–i286. doi:10.1093/chemse/bjh226

    Article  PubMed  Google Scholar 

  • Kanzaki R, Ando N, Sakurai T, Kazawa T (2008) Understanding and reconstruction of the mobiligence of insects employing multiscale biological approaches and robotics. Adv Robot 22:1605–1628. doi:10.1163/156855308x368949

    Article  Google Scholar 

  • Kazawa T, Namiki S, Fukushima R, Terada M, Soo K, Kanzaki R (2009) Constancy and variability of glomerular organization in the antennal lobe of the silkmoth. Cell Tissue Res 336:119–136. doi:10.1007/s00441-009-0756-3

    Article  PubMed  Google Scholar 

  • Kennedy JS (1940) The visual responses of flying mosquitoes. Proc Zool Soc Lond 109:221–242

    Google Scholar 

  • Kennedy JS (1983) Zigzagging and casting as a programmed response to wind-borne odour: a review. Physiol Entomol 8:109–120

    Article  Google Scholar 

  • Kennedy JS, Marsh D (1974) Pheromone-regulated anemotaxis in flying moths. Science 184:999–1001

    Article  PubMed  CAS  Google Scholar 

  • Kloppenburg P, Ferns D, Mercer AR (1999) Serotonin enhances central olfactory neuron responses to female sex pheromone in the male sphinx moth Manduca sexta. J Neurosci 19:8172–8181

    PubMed  CAS  Google Scholar 

  • Koontz MA, Schneider D (1987) Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res 249:39–50

    Article  Google Scholar 

  • Kowadlo G, Russell RA (2008) Robot odor localization: a taxonomy and survey. Int J Robot Res 27:869–894. doi:10.1177/0278364908095118

    Article  Google Scholar 

  • Kramer E (1975) Orientation of the male silkmoth to the sex attractant bombykol. In: Denton DA, Coghlan J (eds) Mechanisms in insect olfaction. Academic Press, New York, pp 329–335

    Google Scholar 

  • Kramer E (1986) Turbulent diffusion and pheromone triggered anemotaxis. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 59–67

    Google Scholar 

  • Kuwana Y, Nagasawa S, Shimoyama I, Kanzaki R (1999) Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosensens Bioelectron 14:195–202

    Article  CAS  Google Scholar 

  • Mafra-Neto A, Cardé RT (1994) Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144

    Article  CAS  Google Scholar 

  • Mafra-Neto A, Cardé RT (1996) Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol Entomol 20:117–133

    Article  Google Scholar 

  • Marin EC, Jefferies GSXE, Komiyama T, Zhu H, Luo L (2002) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243–255

    Article  PubMed  CAS  Google Scholar 

  • Melano T (2011) Insect-machine interfacing. The University of Arizona, Dissertation

    Google Scholar 

  • Mercer AR, Hayashi JH, Hildebrand JG (1995) Modulatory effects of 5-hydroxytryptamine on voltage-activated currents in cultured antennal lobe neurons of the sphinx moth Manduca sexta. J Exp Biol 198:613–627

    PubMed  CAS  Google Scholar 

  • Mercer AR, Kloppenburg P, Hildebrand JG (1996) Serotonin-induced changes in the excitability of cultured antennal-lobe neurons of the sphinx moth Manduca sexta. J Comp Physiol A 178:21–31

    Article  PubMed  CAS  Google Scholar 

  • Milde JJ, Seyan HS, Strausfeld NJ (1987) The neck motor system of the fly Calliphora erythrocephala. II. Sensory organization. J Comp Physiol A 160:225–238

    Article  Google Scholar 

  • Minegishi R, Takashima A, Kurabayashi D, Kanzaki R (2012) Construction of a brain–machine hybrid system to evaluate adaptability of an insect. Robot Auton Syst 60:692–699. doi:10.1016/j.robot.2011.06.012

    Article  Google Scholar 

  • Mishima T, Kanzaki R (1998) Coordination of flipflopping neural signals and head turning during pheromone-mediated walking in a male silkworm moth Bombyx mori. J Comp Physiol A 183:273–282

    Article  Google Scholar 

  • Mishima T, Kanzaki R (1999) Physiological and morphological characterization of olfactory descending interneurons of the male silkworm moth, Bombyx mori. J Comp Physiol A 184:143–160

    Article  Google Scholar 

  • Mizunami M, Okada R, Li Y, Strausfeld NJ (1998) Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J Comp Neurol 402:501–519

    Article  PubMed  CAS  Google Scholar 

  • Mizunami M, Yokohari F, Takahata M (1999) Exploration into the adaptive design of the arthropod “Microbrain”. Zool Sci 16(5):703–709. doi:10.2108/Zsj.16.703

    Article  Google Scholar 

  • Mizunami M, Yokohari F, Takahata M (2004) Further exploration into the adaptive design of the arthropod “microbrain”: I. Sensory and memory-processing systems. Zool Sci 21(12):1141–1151. doi:10.2108/Zsj.21.1141

    Article  PubMed  Google Scholar 

  • Murlis J, Jones CD (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6:71–86

    Article  Google Scholar 

  • Murlis J, Elkinton JS, Cardé RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532

    Article  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642. doi:10.1126/science.1106267

    Article  PubMed  CAS  Google Scholar 

  • Namiki S, Kanzaki R (2011) Heterogeneity in dendritic morphology of moth antennal lobe projection neurons. J Comp Neurol 519(17):3367–3386

    Article  PubMed  Google Scholar 

  • Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A 194:501–515. doi:10.1007/s00359-008-0325-3

    Article  CAS  Google Scholar 

  • Namiki S, Takaguchi M, Seki Y, Kazawa T, Fukushima R, Iwatsuki C, Kanzaki R (2013) Concentric zones for pheromone components in the mushroom body calyx of the moth brain. J Comp Neurol (in press)

  • Nishino H, Yamashita S, Yamazaki Y, Nishikawa M, Yokohari F, Mizunami M (2003) Projection neurons originating from thermo- and hygrosensory glomeruli in the antennal lobe of the cockroach. J Comp Neurol 455:40–55. doi:10.1002/cne.10450

    Article  PubMed  Google Scholar 

  • Obara Y (1979) Bombyx mori mating dance: an essential in locating the female. Appl Entomol Zool 14:130–132

    Google Scholar 

  • Ochieng SA, Park KC, Baker TC (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A 188:325–333. doi:10.1007/s00359-002-0308-8

    Article  CAS  Google Scholar 

  • Okada R, Ikeda J, Mizunami M (1999) Sensory responses and movement-related activities in extrinsic neurons on the cockroach mushroom bodies. J Comp Physiol A 185:115–129

    Article  Google Scholar 

  • Olberg RM (1983) Pheromone-triggered flip-flopping interneurons in the ventral nerve cord of the silkworm moth, Bombyx mori. J Comp Physiol A 152:297–307

    Article  CAS  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2006) A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J Exp Biol 209:4464–4474

    Article  PubMed  Google Scholar 

  • Reiser MB, Dickinson MH (2008) A modular display system for insect behavioral neuroscience. J Neurosci Methods 167:127–139. doi:10.1016/j.jneumeth.2007.07.019

    Article  PubMed  Google Scholar 

  • Russell RA (2001) Tracking chemical plumes in constrained environments. Robotica 19:451–458. doi:10.1017/S0263574700003283

    Article  Google Scholar 

  • Sakurai T, Nakagawaga T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 101:16653–16658. doi:10.1073/pnas.0407596101

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kobayashi I, Sezutsu H, Tamura T, Kanzaki R (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7:e1002115. doi:10.1371/journal.pgen.1002115

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Kaissling KE (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticulare Bildungen und innerer Bau. Zool Jahrb Abt Anat Ontog Tiere 76:223–250

    Google Scholar 

  • Schröter U, Wilson SLJ, Srinivasan MV, Ibbotson MR (2007) The morphology, physiology and function of suboesophageal neck motor neurons in the honeybee. J Comp Physiol A 193:289–304. doi:10.1007/s00359-006-0182-x

    Article  Google Scholar 

  • Seki Y, Kanzaki R (2008) Comprehensive morphological identification and GABA immunocytochemistry of antennal lobe local interneurons in Bombyx mori. J Comp Neurol 506:93–107. doi:10.1002/cne.21528

    Article  PubMed  CAS  Google Scholar 

  • Seki Y, Aonuma H, Kanzaki R (2005) Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide-induced anti-cGMP immunocytochemistry. J Comp Neurol 481:340–351. doi:10.1002/cne.20392

    Article  PubMed  CAS  Google Scholar 

  • Shepheard P (1973) Control of head movement in the locust, Schistocerca gregaria. J Exp Biol 60:735–767

    Google Scholar 

  • Shepheard P (1974) Musculature Innervation of the neck of the desert locust, Schistocerca gregaria (Forskal). J Morph 139:439–464

    Article  Google Scholar 

  • Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora erythrocephala. I. Muscles and motor neurons. J Comp Physiol A 160:205–224

    Article  Google Scholar 

  • Takalo J, Piironen A, Honkanen A, Lempea M, Aikio M, Tuukkanen T, Vahasoyrinki M (2012) A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments. Sci Rep 2. doi:10.1038/Srep00324

  • Takasaki T, Namiki S, Kanzaki R (2012) Use of Bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori. J Comp Physiol A 198:295–307. doi:10.1007/s00359-011-0708-8

    Article  Google Scholar 

  • Tanaka NK, Awasaki T, Shimada T, Ito K (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457. doi:10.1016/j.cub.2004.03.006

    Article  PubMed  CAS  Google Scholar 

  • Vergassola M, Villermaux E, Shraiman BI (2007) ‘Infotaxis’ as a strategy for searching without gradients. Nature 445:406–409. doi:10.1038/nature05464

    Article  PubMed  CAS  Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212

    Article  PubMed  CAS  Google Scholar 

  • Vickers NJ, Baker TC (1992) Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera: Noctuidae). J Insect Behav 5:669–687

    Article  Google Scholar 

  • Vickers NJ, Baker TC (1994) Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc Natl Acad Sci USA 91:5756–5760

    Article  PubMed  CAS  Google Scholar 

  • Vickers NJ, Baker TC (1996) Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J Comp Physiol A 178:831–847

    Article  Google Scholar 

  • Wada S, Kanzaki R (2005) Neural control mechanisms of the pheromone-triggered programmed behavior in male silkmoths revealed by double-labeling of descending interneurons and a motor neuron. J Comp Neurol 484:168–182. doi:10.1002/cne.20452

    Article  PubMed  Google Scholar 

  • Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J Comp Physiol A 161:23–32

    Article  PubMed  CAS  Google Scholar 

  • Webb B, Harrison RR, Willis MA (2004) Sensorimotor control of navigation in arthropod and artificial systems. Arthropod Struct Dev 33:301–329

    Article  PubMed  Google Scholar 

  • Wertz A, Haag J, Borst A (2012) Integration of binocular optic flow in cervical neck motor neurons of the fly. J Comp Physiol A 198:655–668. doi:10.1007/s00359-012-0737-y

    Article  Google Scholar 

  • Willis MA, Arbas EA (1991) Odor-modulated upwind flight of the sphinx moth, Manduca sexta L. J Comp Physiol A 169:427–440

    Article  PubMed  CAS  Google Scholar 

  • Willis MA, Baker TC (1987) Comparison of manoeuvres used by walking versus flying Grapholita molesta males during pheromone-mediated upwind movement. J Insect Physiol 33:875–883

    Article  Google Scholar 

  • Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241

    Article  PubMed  CAS  Google Scholar 

  • Yamagata T, Sakurai T, Uchino K, Sezutsu H, Tamura T, Kanzaki R (2008) GFP labeling of neurosecretory cells with the GAL4/UAS system in the silkmoth brain enables selective intracellular staining of neurons. Zool Sci 25:509–516. doi:10.2108/zsj.25.509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Kanzaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzaki, R., Minegishi, R., Namiki, S. et al. Insect–machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori . J Comp Physiol A 199, 1037–1052 (2013). https://doi.org/10.1007/s00359-013-0832-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0832-8

Keywords

Navigation