Skip to main content
Log in

Mechanisms of chloride uptake in frog olfactory receptor neurons

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Odorant stimulation of olfactory receptor neurons (ORNs) leads to the activation of a Ca2+ permeable cyclic nucleotide-gated (CNG) channel followed by opening of an excitatory Ca2+-activated Cl channel, which carries about 70% of the odorant-induced receptor current. This requires ORNs to have a [Cl]i above the electrochemical equilibrium to render this anionic current excitatory. In mammalian ORNs, the Na+-K+-2Cl co-transporter 1 (NKCC1) has been characterized as the principal mechanism by which these neurons actively accumulate Cl. To determine if NKCC activity is needed in amphibian olfactory transduction, and to characterize its cellular location, we used the suction pipette technique to record from Rana pipiens ORNs. Application of bumetanide, an NKCC blocker, produced a 50% decrease of the odorant-induced current. Similar effects were observed when [Cl]i was decreased by bathing ORNs in low Cl solution. Both manipulations reduced only the Cl component of the current. Application of bumetanide only to the ORN cell body and not to the cilia decreased the current by again about 50%. The results show that NKCC is required for amphibian olfactory transduction, and suggest that the co-transporter is located basolaterally at the cell body although its presence at the cilia could not be discarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Leefmans FJ, Gamino SM, Giraldez F, Nogueron I (1988) Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes. J Physiol 406:225–246

    PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans FJ, Leon-Olea M, Mendoza-Sotelo J, Alvarez FJ, Anton B, Garduno R (2001) Immunolocalization of the Na+-K+-2Cl cotransporter in peripheral nervous tissue of vertebrates. Neuroscience 104:569–582

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, Patton CW, Nuccitelli R (1994) A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol 40:3–29

    Article  PubMed  CAS  Google Scholar 

  • Bhandawat V, Reisert J, Yau KW (2005) Elementary response of olfactory receptor neurons to odorants. Science 308:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  • Chiu D, Nakamura T, Gold GH (1988) Ionic composition of toad olfactory mucus measured with ion-selective microelectrodes. Chem Senses 13:677–678

    Google Scholar 

  • Dallos P, Hallworth R, Evans BN (1993) Theory of electrically driven shape changes of cochlear outer hair cells. J Neurophysiol 70:299–323

    PubMed  CAS  Google Scholar 

  • Dehaye JP, Nagy A, Premkumar A, Turner RJ (2003) Identification of a functionally important conformation-sensitive region of the secretory Na+-K+-2Cl cotransporter (NKCC1). J Biol Chem 278:11811–11817

    Article  PubMed  CAS  Google Scholar 

  • Dmitriev AV, Dmitrieva NA, Keyser KT, Mangel SC (2007) Multiple functions of cation-chloride cotransporters in the fish retina. Vis Neurosci 24:635–645

    Article  PubMed  Google Scholar 

  • Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144

    Article  PubMed  CAS  Google Scholar 

  • Frings S, Seifert R, Godde M, Kaupp UB (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15:169–179

    Article  PubMed  CAS  Google Scholar 

  • Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85:423–493

    Article  PubMed  CAS  Google Scholar 

  • Haas M, Forbush B 3rd (2000) The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol 62:515–534

    Article  PubMed  CAS  Google Scholar 

  • Haas M, McBrayer D, Lytle C (1995) [Cl-]i-dependent phosphorylation of the Na-K-Cl cotransport protein of dog tracheal epithelial cells. J Biol Chem 270:28955–28961

    Article  PubMed  CAS  Google Scholar 

  • Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, Khamdang S, Aleboyeh M, Onozato ML, Tojo A, Enomoto A, Anzai N, Narikawa S, Huang XL, Niwa T, Endou H (2004) Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther 308:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Hengl T, Kaneko H, Dauner K, Vocke K, Frings S, Mohrlen F (2010) Molecular components of signal amplification in olfactory sensory cilia. Proc Natl Acad Sci USA 107:6052–6057

    Article  PubMed  CAS  Google Scholar 

  • Kaler G, Truong DM, Sweeney DE, Logan DW, Nagle M, Wu W, Eraly SA, Nigam SK (2006) Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem Biophys Res Commun 351:872–876

    Article  PubMed  CAS  Google Scholar 

  • Kaneko H, Nakamura T, Lindemann B (2001) Noninvasive measurement of chloride concentration in rat olfactory receptor cells with use of a fluorescent dye. Am J Physiol Cell Physiol 280:C1387–C1393

    PubMed  CAS  Google Scholar 

  • Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24:7931–7938

    Article  PubMed  CAS  Google Scholar 

  • Kleene SJ (1997) High-gain, low-noise amplification in olfactory transduction. Biophys J 73:1110–1117

    Article  PubMed  CAS  Google Scholar 

  • Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33:839–859

    Article  PubMed  CAS  Google Scholar 

  • Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Ohbayashi M, Kohyama N, Yamamoto T (2005) Mouse organic anion transporter 2 and 3 (mOAT2/3[Slc22a7/8]) mediates the renal transport of bumetanide. Eur J Pharmacol 524:44–48

    PubMed  CAS  Google Scholar 

  • Kurahashi T, Yau KW (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74

    Article  PubMed  CAS  Google Scholar 

  • Li B, McKernan K, Shen W (2008) Spatial and temporal distribution patterns of Na-K-2Cl cotransporter in adult and developing mouse retinas. Vis Neurosci 25:109–123

    Article  PubMed  Google Scholar 

  • Lorin-Nebel C, Boulo V, Bodinier C, Charmantier G (2006) The Na+-K+-2Cl cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J Exp Biol 209:4908–4922

    Article  PubMed  CAS  Google Scholar 

  • Lowe G, Gold GH (1991) The spatial distributions of odorant sensitivity and odorant-induced currents in salamander olfactory receptor cells. J Physiol 442:147–168

    PubMed  CAS  Google Scholar 

  • Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–286

    Article  PubMed  CAS  Google Scholar 

  • Lukashkin AN, Russell IJ (1997) The voltage dependence of the mechanoelectrical transducer modifies low frequency outer hair cell electromotility in vitro. Hear Res 113:133–139

    Article  PubMed  CAS  Google Scholar 

  • Lytle C, Xu JC, Biemesderfer D, Forbush B 3rd (1995) Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol 269:C1496–C1505

    PubMed  CAS  Google Scholar 

  • Ma M (2007) Encoding olfactory signals via multiple chemosensory systems. Crit Rev Biochem Mol Biol 42:463–480

    Article  PubMed  CAS  Google Scholar 

  • Matthews HR, Reisert J (2003) Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol 13:469–475

    Article  PubMed  CAS  Google Scholar 

  • Menco BP (1980) Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory structures of frog, ox, rat, and dog. I. A general survey. Cell Tissue Res 207:183–209

    Article  PubMed  CAS  Google Scholar 

  • Menco BP, Farbman AI (1992) Ultrastructural evidence for multiple mucous domains in frog olfactory epithelium. Cell Tissue Res 270:47–56

    Article  PubMed  CAS  Google Scholar 

  • Menini A, Lagostena L, Boccaccio A (2004) Olfaction: from odorant molecules to the olfactory cortex. News Physiol Sci 19:101–104

    PubMed  CAS  Google Scholar 

  • Monte JC, Nagle MA, Eraly SA, Nigam SK (2004) Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun 323:429–436

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Kaneko H, Nishida N (1997) Direct measurement of the chloride concentration in newt olfactory receptors with the fluorescent probe. Neurosci Lett 237:5–8

    Article  PubMed  CAS  Google Scholar 

  • Nickell WT, Kleene NK, Gesteland RC, Kleene SJ (2006) Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1. J Neurophysiol 95:2003–2006

    Article  PubMed  CAS  Google Scholar 

  • Nickell WT, Kleene NK, Kleene SJ (2007) Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 583:1005–1020

    Article  PubMed  CAS  Google Scholar 

  • Reisert J, Matthews HR (1998) Na+-dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J Gen Physiol 112:529–535

    Article  PubMed  CAS  Google Scholar 

  • Reisert J, Bauer PJ, Yau KW, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363

    Article  PubMed  CAS  Google Scholar 

  • Reisert J, Lai J, Yau KW, Bradley J (2005) Mechanism of the excitatory Cl response in mouse olfactory receptor neurons. Neuron 45:553–561

    Article  PubMed  CAS  Google Scholar 

  • Reuter D, Zierold K, Schroder WH, Frings S (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18:6623–6630

    PubMed  CAS  Google Scholar 

  • Rocha-Gonzalez HI, Mao S, Alvarez-Leefmans FJ (2008) Na+, K+, 2Cl cotransport and intracellular chloride regulation in rat primary sensory neurons: thermodynamic and kinetic aspects. J Neurophysiol 100:169–184

    Article  PubMed  CAS  Google Scholar 

  • Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466

    PubMed  CAS  Google Scholar 

  • Sturla M, Prato P, Masini MA, Uva BM (2003) Ion transport proteins and aquaporin water channels in the kidney of amphibians from different habitats. Comp Biochem Physiol C Toxicol Pharmacol 136:1–7

    Article  PubMed  CAS  Google Scholar 

  • Vanthanouvong V, Kozlova I, Roomans GM (2005) Ionic composition of rat airway surface liquid determined by X-ray microanalysis. Microsc Res Tech 68:6–12

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Delpire E, Hebert SC, Strange K (1998) Functional demonstration of Na+-K+-2Cl cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol 275:C1565–C1572

    PubMed  CAS  Google Scholar 

  • Zhainazarov AB, Ache BW (1995) Odor-induced currents in Xenopus olfactory receptor cells measured with perforated-patch recording. J Neurophysiol 74:479–483

    PubMed  CAS  Google Scholar 

  • Zhang LL, Delpire E, Vardi N (2007) NKCC1 does not accumulate chloride in developing retinal neurons. J Neurophysiol 98:266–277

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Shepherd GM, Firestein S (1991) Inhibition of the olfactory cyclic nucleotide gated ion channel by intracellular calcium. Proc Biol Sci 246:225–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Graeme Lowe and Fritz Lischka for critical reading of the manuscript and Dr. Karen Yee for help and advice. This work was supported by the Monell Chemical Senses Center and a Morley Kare Fellowship (to JR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Jaén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaén, C., Ozdener, M.H. & Reisert, J. Mechanisms of chloride uptake in frog olfactory receptor neurons. J Comp Physiol A 197, 339–349 (2011). https://doi.org/10.1007/s00359-010-0618-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0618-1

Keywords

Navigation