Skip to main content
Log in

Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1,125–1,250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1,450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AEP:

Auditory evoked potentials

AM:

Amplitude modulated

EEG:

Electro encephalogram

FFT:

Fast Fourier transform

MRTF:

Modulation rate transfer function

RFR:

Rate following response

RMS:

Root mean square

SAM:

Sinusoidally amplitude modulated

SPL:

Sound pressure level

V p–p :

Peak-to-peak voltage

References

  • Au WWL (1993) The sonar of dolphins. Springer, New York

    Google Scholar 

  • Au WWL, Moore PWB, Pawloski DA (1988) Detection of complex echoes in noise by an echolocating dolphin. J Acoust Soc Am 83:662–668

    Article  PubMed  CAS  Google Scholar 

  • Au WWL, Kastelein RA, Rippe HT, Schooneman NM (1999) Transmission beam pattern and echolocation signals of a harbor porpoise (Phocoena phocoena). J Acoust Soc Am 106:3699–3705

    Article  PubMed  CAS  Google Scholar 

  • Condon CJ, Galazyuk A, White KR, Feng AS (1997) Neurons in the auditory cortex of the little brown bat exhibit selectivity for complex amplitude-modulated signals that mimic echoes from fluttering insects. Audit Neurosci 3:269–287

    Google Scholar 

  • Cook MLH, Verela RA, Goldstein JD, McCulloch SD, Bossart GD, Finneran JJ, Houser DS, Mann DA (2006) Beaked whale auditory evoked potential hearing measurements. J Comp Physiol A 192:489–495

    Article  Google Scholar 

  • Dolphin WF, Mountain DC (1992) The envelope following response: scalp potentials elicited in the mongolian gerbil using sinusoidally AM acoustic signals. Hear Res 58:70–78

    Article  PubMed  CAS  Google Scholar 

  • Dolphin WF, Au WWL, Nachtigall PE, Pawloski JL (1995) Modulation rate transfer functions to low frequency carriers by three species of cetaceans. J Comp Physiol A 177:235–245

    Article  Google Scholar 

  • Dooling RJ, Searcy MH (1981) Amplitude modulation thresholds for the parakeet, Melopsittacus undulatus. J Comp Physiol A 143:383–388

    Article  Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 229–263

    Google Scholar 

  • Finneran JJ, London HR, Houser DS (2007) Modulation rate transfer functions in bottlenose dolphins (Tursiops truncatus) with normal hearing and high-frequency hearing loss. J Comp Physiol A 193:835–843

    Article  Google Scholar 

  • Fullard JH, Ratcliffe JM, Guignion C (2005) Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus, to the echolocation calls of sympatric bats. J Comp Physiol A 191:605–618

    Article  Google Scholar 

  • Fuzessery ZM, Feng AS, Supin AY (2003) Central auditory processing of temporal information in bats and dolphins. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphin. University of Chicago Press, Chicago, pp 115–122

    Google Scholar 

  • Grothe B, Park TJ, Schuller G (1997) Medial superior olive in the free-tailed bat: response to pure tones and amplitude-modulated tones. J Neurophysiol 77:1553–1565

    PubMed  CAS  Google Scholar 

  • Hall JW (2007) The new handbook of auditory evoked potentials. Pearson Education, Boston

    Google Scholar 

  • Ketten DR (2000) Structure of cetacean ears. In: Au WWL, Fay RJ, Popper AN (eds) Hearing by whales and dolphins. Springer, New York, pp 43–108

    Google Scholar 

  • Klishin VO, Popov VV, Supin AY (2000) Hearing capabilities of a beluga whale, Delphinapterus leucas. Aquat Mamm 26:212–228

    Google Scholar 

  • Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21:179–192

    Article  PubMed  CAS  Google Scholar 

  • Madsen PT (2005) Marine mammals and noise: Problems with root mean square sound pressure levels for transients. J Acoust Soc Am 117:3957–3962

    Article  Google Scholar 

  • Madsen PT, Kerr I, Payne R (2004) Echolocation clicks of two free-ranging, oceanic delphinids with different food preferences: false killer whales Pseudorca crassidens and Risso’s dolphins Grampus griseus. J Exp Biol 207:1811–1823

    Article  PubMed  CAS  Google Scholar 

  • Mann DA, Colbert DE, Gaspard JC, Casper BM, Cook MLH, Reep RL, Bauer GB (2005) Temporal resolution of the Florida manatee (Trichechus manatus) auditory system. J Comp Physiol A 191:903–908

    Article  Google Scholar 

  • Møhl B, Au WWL, Pawloski JL, Nachtigall PE (1999) Dolphin hearing: relative sensitivity as a function of point of application of a contact sound source in the jaw and head region. J Acoust Soc Am 105:3421–3424

    Article  PubMed  Google Scholar 

  • Mooney TA, Nachtigall PE, Yuen MML (2006) Temporal resolution of the Risso’s dolphin, Grampus griseus, auditory system. J Comp Physiol A 192:373–380

    Article  Google Scholar 

  • Mooney TA, Nachtigall PE, Castellote M, Taylor KA, Pacini AF, Esteban J-A (2008) Hearing pathways and directional sensitivity of the beluga whale, Delphinapterus leucas. J Exp Mar Biol Ecol 362:108–116

    Article  Google Scholar 

  • Mulsow J, Reichmuth CJ (2007) Electrophysiological assessment of temporal resolution in pinnipeds. Aquat Mamm 33:122–131

    Article  Google Scholar 

  • Myrberg AA (1986) Sound producing by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34:913–923

    Article  Google Scholar 

  • Myrberg AA Jr (1997) Sound production by a coral reef fish (Pomacentrus partitus): Evidence for a vocal, territorial “keep-out” signal. Bull Mar Sci 60:1017–1025

    Google Scholar 

  • Nachtigall PE, Mooney TA, Taylor KA, Yuen MML (2007) Hearing and auditory evoked potential methods applied to odontocete cetaceans. Aquat Mamm 33:6–13

    Article  Google Scholar 

  • Nachtigall PE, Mooney TA, Taylor KA, Miller LA, Rasmussen M, Akamatsu T, Teilmann J, Linnenschidt M, Vikingsson GA (2008) Shipboard measurements of the hearing of the white-beaked dolphin, Lagenorynchus albirostris. J Exp Biol 211:642–647

    Article  PubMed  CAS  Google Scholar 

  • Norris KS, Harvey GW (1974) Sound transmission in the porpoise head. J Acoust Soc Am 56:659–664

    Article  PubMed  CAS  Google Scholar 

  • Popov VV, Supin AY (1998) Auditory evoked responses to rhythmic sound pulses in dolphins. J Comp Physiol A 183:519–524

    Article  PubMed  CAS  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wang K (2006) Nonconstant quality of auditory filters in the porpoises, Phocoena phocoena, and Neophocaena phocaenoides (Cetacea, Phocoenidae). J Acoust Soc Am 119:3173–3180

    Article  PubMed  Google Scholar 

  • Purcell DW, John SM, Schneider BA, Picton TW (2004) Human temporal auditory acuity as assessed by envelope following responses. J Acoust Soc Am 116:3581–3593

    Article  PubMed  Google Scholar 

  • Rasmussen M, Miller LA (2002) Whistles and clicks from white-beaked dolphins, Lagenorynchus albirostris, recorded in Faxaflόi Bay, Iceland. Aquat Mamm 28.1:78–89

    Google Scholar 

  • Rose GJ, Brenowitz EA, Capranica RR (1985) Species specificity and temperature dependence of temporal processing by the auditory midbrain of two species of treefrogs. J Comp Physiol A 157:763–769

    Article  PubMed  CAS  Google Scholar 

  • Ryan A (1976) Hearing sensitivity of the Mongolian gerbil, Meriones unguiculatis. J Acoust Soc Am 59:1222–1226

    Article  PubMed  CAS  Google Scholar 

  • Supin AY, Popov VV (1995) Envelope-following response and modulation rate transfer function in the dolphin’s auditory system. Hear Res 92:38–45

    Article  PubMed  CAS  Google Scholar 

  • Supin AY, Popov VV (2003) Temporal processing of rapidly following sounds: Evoked potential study. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 153–160

    Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer, Boston

    Google Scholar 

  • Surlykke A, Bojesen O (1996) Integration time for short broad band clicks in echolocating FM-bats (Eptesicus fuscus). J Comp Physiol A 178:235–241

    Article  PubMed  CAS  Google Scholar 

  • Szymanski MD, Supin AY, Bain DE, Henry KR (1998) Killer whale auditory evoked potentials to rhythmic clicks. Mar Mamm Sci 14:676–691

    Article  Google Scholar 

  • Szymaszek A, Szelag E, Sliwowska M (2006) Auditory perception of temporal order in humans: The effect of age, gender, listener practice and stimulus presentation. Neurosci Lett 403:190–194

    Article  PubMed  CAS  Google Scholar 

  • Urick RJ (1983) Principles of underwater sound. Mc-Graw-Hill, New York

    Google Scholar 

  • Wiegrebe L, Schmidt S (1996) Temporal integration in the echolocating bat, Meagderma lyra. Hear Res 102:35–42

    Article  PubMed  CAS  Google Scholar 

  • Yost WA (1994) Fundamentals of hearing: an introduction. Academic, New York

    Google Scholar 

Download references

Acknowledgments

This study was conducted in accordance with Icelandic National Regulation number 279/2002 on animal experiments with permission of the Icelandic National Animal Research Committee, permit nr. 0706–2701 and with the full approval of the University of Hawaii Institutional Animal Care and Utilization Committee protocol number 06–036. We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272–05-0395). Monitoring of animal health and safety and the research cruise was facilitated by the dedicated work of Jeff Foster, Guðlaugur Bjarnason, Kristinn Runólfur Guðlaugsson and Katja Vinding Peterson. Tomonari Akamatsu, Jonas Teilmann, Meike Linnenschmidt, and Gisli A. Vikingsson were instrumental in data collection. Marlee Breese and Munch MacDonald were helpful in developing the stretcher and others at the Marine Mammal Research Program were valuable in technical support. This is contribution number 1332 from the Hawaii Institute of Marine Biology and SOEST contribution number 7608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Aran Mooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooney, T.A., Nachtigall, P.E., Taylor, K.A. et al. Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris). J Comp Physiol A 195, 375–384 (2009). https://doi.org/10.1007/s00359-009-0415-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0415-x

Keywords

Navigation