Skip to main content
Log in

Electrophysiological characterisation of the infrared organ of the Australian “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

This study characterises the response properties of the sensilla located on the prothoracic disc organ of the beetle Acanthocnemus nigricans, such as intensity response functions and temporal coding properties. Warming the sensilla by a red laser accelerated their ongoing spiking activity, cessation of the stimulus suppressed their firing as revealed by extracellular recordings. Convective heat sources also increased sensillum activity, but stimuli of other modalities failed to elicit responses. The response threshold was between 11 and 25 mW/cm2 and latencies ranged between 20 and 40 ms. Repeating stimuli with frequencies between 5 and 20 Hz were reliably resolved by the sensilla. This temporal resolution enables the disc sensilla to represent behaviourally relevant changes in heat stimuli in a thermally patchy environment. These findings complement our knowledge on the sensory physiology of pyrophilous insects by hinting at two different, elementary orientation strategies evolved in the three pyrophilous beetle species described. A. nigricans seems to be best adapted to short-range orientation on freshly burnt areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Ann Rev Entomol 30:273–295

    Article  Google Scholar 

  • Champion GC (1922) The geographical distribution and synonomy of the dasytid-beetle Acanthocnemus nigricans Hope (=ciliatus Perris). Entomol Mon Mag 58:77–79

    Google Scholar 

  • Darian-Smith I, Johnson KO, LaMotte C, Shigenaga Y, Kenins P, Champness P (1979) Warm fibres innervating palmar and digital skin of monkey: responses to thermal stimuli. J Neurophysiol 42:1297–1315

    PubMed  CAS  Google Scholar 

  • Davis EE, Sokolove PG (1975) Temperature response of antennal receptors of the mosquito, Aedes aegypti. J Comp Physiol 96:223–236

    Article  Google Scholar 

  • De Cock Buning TJ, Terashima S, Goris RC (1981a) Crotaline pit organs analysed as warm receptors. Cell Mol Neurobiol 1:69–85

    Article  PubMed  Google Scholar 

  • De Cock Buning TJ, Terashima S, Goris RC (1981b) Python pit organs analysed as warm receptors. Cell Mol Neurobiol 1:7–27

    Google Scholar 

  • Drew PJ, Abbott LF (2006) Models and properties of power-law adaptation in neural systems. J Neurophysiol 96:826–833

    Article  PubMed  Google Scholar 

  • Ehn R, Tichy H (1996) Threshold for detecting temperature changes in a spider thermoreceptor. J Neurophysiol 76:2608–2613

    PubMed  CAS  Google Scholar 

  • Evans WG (1966a) Perception of infrared radiation from forest fires by Melanophila acuminata (Buprestidae, Coleoptera). Ecology 47:1061–1065

    Article  Google Scholar 

  • Evans WG (1966b) Morphology of the infrared sense organ of Melanophila acuminata (Buprestidae, Coleoptera). Ann Entomol Soc Am 59:873–877

    Google Scholar 

  • French AS (1984) Action potential adaptation in the femoral tactile spine of the cockroach, Periplaneta america. J Comp Physiol 155:803–812

    Article  Google Scholar 

  • French AS (1992) Mechantransduction. Annu Rev Physiol 54:135–152

    Article  PubMed  CAS  Google Scholar 

  • Gingl E, Tichy H (2001) Infrared sensitivity of thermoreceptors. J Comp Physiol A 187:467–475

    Article  PubMed  CAS  Google Scholar 

  • Hellon RF, Hensel H, Schäfer K (1975) Thermal receptors in the scrotum of the rat. J Physiol (Lond) 248:349–357

    CAS  Google Scholar 

  • Hensel H, Huopaniemi T (1969) Static and dynamic properties of warm fibres in the infraorbital nerve. Pflügers Arch 309:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hensel H, Kenshalo DR (1969) Warm receptors in the nasal region of the cat. J Physiol (Lond) 204:99–112

    CAS  Google Scholar 

  • Hensel H, Iggo A (1971) Analysis of cutaneous warm and cold fibres in primates. Pflügers Arch 329:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hess E, Loftus R (1984) Warm and cold receptors of two sensilla on the foreleg tarsi of tropical bont tick, Amblyomma variegatum. J Comp Physiol A 155:187–195

    Article  Google Scholar 

  • Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75(5):1806–1814

    PubMed  CAS  Google Scholar 

  • Kreiss EJ, Schmitz A, Schmitz H (2005) Morphology of the prothoracic discs and associated sensilla of Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Arthropod Struct Dev 34:419–428

    Google Scholar 

  • Laughlin S (1989) The role of sensory adaptation in the retina. J Exp Biol 146:39–62

    PubMed  CAS  Google Scholar 

  • Lawrence JF, Britton EB (1994) Australian beetles. Melbourne University Press, Melbourne

    Google Scholar 

  • Loftus R (1978) Peripheral thermal receptors. In: Ali MA (ed) Sensory ecology: reviews and perspectives. Plenum, New York/London, pp 439–466

    Google Scholar 

  • Loftus R, Corbiére-Tichané G (1981) Antennal warm and cold receptors of the cave beetle, Speophyes lucidulus Delar, in sensilla with a lamellated dendrite. I. Responses to sudden temperature change. J Comp Physiol A 143:443–452

    Article  Google Scholar 

  • Mainz T, Schmitz A, Schmitz H (2004) Variation in number and differentiation of the abdominal infrared receptors in the australian “fire-beetle” Merimna atrata (Coleoptera, Buprestidae). Arthropod Struct Dev 33:419–430

    Article  Google Scholar 

  • Mendelson M, Loewenstein WR (1964) Mechanisms of receptor adaptation. Science 144:554–555

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org

  • Schäfer K, Braun HA, Kürten L (1988) Analysis of cold and warm receptor activity in vampire bats and mice. Pflügers Arch 412:188–194

    PubMed  Google Scholar 

  • Schmitz H, Bleckmann H (1998) The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). J Comp Physiol A 182:647–657

    Article  Google Scholar 

  • Schmitz H, Mürtz M, Bleckmann H (1997) Infrared detection in a beetle. Nature 386:773–774

    Article  CAS  Google Scholar 

  • Schmitz H, Schmitz A (2002) Australian fire beetles. Landscope Spring:36–41

  • Schmitz H, Schmitz A, Bleckmann H (2000) A new type of infrared organ in the Australian “fire beetle” Merimna atrata (Coleoptera, Buprestidae). Naturwissenschaften 87:542–545

    Article  PubMed  CAS  Google Scholar 

  • Schmitz H, Schmitz A, Bleckmann H (2001) Morphology of a thermosensitive multipolar neuron in the infrared organ of Merimna atrata (Coleoptera, buprestidae). Arthropod Struct Dev 30:99–111

    Article  Google Scholar 

  • Schmitz H, Schmitz A, Trenner S, Bleckmann H (2002) A new type of insect infrared organ of low thermal mass. Naturwissenschaften 89:226–229

    Article  PubMed  CAS  Google Scholar 

  • Schmitz H, Trenner S (2003) Electrophysiological characterisation of the multipolar thermoreceptors in the “fire-beetle” Merimna atrata and comparison with the infrared sensilla of Melanophila acuminata (both Coleoptera, Buprestidae). J Comp Physiol A 189:715–722

    Article  CAS  Google Scholar 

  • Schmitz A, Sehrbrock A, Schmitz H (2007) The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coeloptera; Buprestidae) adduces new insight into the transduction mechanism. Arthropod Struct Dev. doi:10.1016/j.asd.2007.02.002

  • Terashima S, Goris RC (1974) Electrophysiology of snake infrared receptors. In: Kerkut GA, Phillis JW (eds) Progress in neurobiology, vol 2. Pergamon, Oxford, pp 311–332

  • Terashima S, Goris RC (1983) Static response of infrared neurons of crotaline snakes–normal distribution of interspike intervals. Cell Mol Neurobiol 3:27–37

    Article  PubMed  CAS  Google Scholar 

  • Vondran T, Apel KH, Schmitz H (1995) The infrared receptor of Melanophila acuminata DE GEER (Coleoptera, Buprestidae): ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor. Tissue Cell 27:645–658

    Article  Google Scholar 

  • Yokohari F (1999) Hygro- and thermoreceptors. In: Eguchi ETY (ed) Atlas of arthropod sensory receptors. Springer, Tokyo, pp 191–210

    Google Scholar 

Download references

Acknowledgements

We appreciate the help of Mike Cantelo and Brian Inglis from CALM in Wanneroo, WA, who enabled us to visit bush fires for the collection of beetles and supported us with the necessary equipment. The Department of Environment and Heritage (Canberra) and the Wildlife Branch of CALM (Perth) issued collection and export permits. We are indebted to Harald Tichy for his valuable comments on an earlier draft of the manuscript and to Horst Bleckmann for his continuous interest in our work and for providing lab space. We also thank Horst Bleckmann for his helpful comments on a former version of this manuscript. Two anonymous reviewers provided constructive and thoughtful comments on the manuscript. Supported by a grant of the DFG to H.S. The experiments comply with the Principles of animal care publication no. 85-23, revised 1985 of the National Institute of Health and also with the laws of Germany (Tierschutzgesetz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreiss, E., Schmitz, H. & Gebhardt, M. Electrophysiological characterisation of the infrared organ of the Australian “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). J Comp Physiol A 193, 729–739 (2007). https://doi.org/10.1007/s00359-007-0228-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0228-8

Keywords

Navigation