Skip to main content

Advertisement

Log in

Ultrahydrophobicity indicates a non-adhesive default state in gecko setae

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Geckos may represent the world’s most demanding adhesives application. The adhesive setae on the toes of climbing geckos must adhere strongly yet avoid fouling or attachment at inappropriate times. We tested the hypothesis that gecko setae are non-adhesive in their unloaded default state by comparing the water droplet contact angle (θ) of isolated setal arrays to the smooth surface of eye spectacle scales of tokay geckos (Gekko gecko). At equilibrium, θ was 98.3 ± 3.4° in spectacle scales of live geckos and 93.3 ± 3.5° in isolated spectacles. Isolated setal arrays were ultrahydrophobic, with θ of 160.6 ± 1.3° (means ± SD). The difference in θ of setal arrays and smooth spectacles indicates a very low contact fraction. Using Cassie’s law of surface wettability, we infer that less than 6.6% of the surface of unloaded setae is solid and at least 93.4% is air space. We calculated that the contact fraction must increase from 6.6% in the unloaded state to 46% in the loaded state to account for previously measured values of adhesion. Thus gecko setae may be non-sticky by default because only a very small contact fraction is possible without mechanically deforming the setal array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

E :

Young’s modulus

E eff :

Effective modulus

f solid :

Fraction of surface area occupied by solid; contact fraction

f air :

Fraction of surface area occupied by air

γ :

Surface energy

PSA:

Pressure sensitive adhesive

PTFE:

Polytetrafluoroethylene

θ :

Water droplet contact angle

θ eq :

Equilibrium water droplet contact angle

θ ad :

Advancing water droplet contact angle

θ rec :

Receding water droplet contact angle

W :

Adhesion energy

References

  • Alibardi L (2003) Ultrastructural autoradiographic and immunocytochemical analysis of setae formation and keratinization in the digital pads of the gecko Hemidactylus turcicus (Gekkonidae, Reptilia). Tissue Cell 35:288–296

    Article  PubMed  CAS  Google Scholar 

  • Arzt E, Enders S, Gorb S (2002) Towards a micromechanical understanding of biological surface devices. Z Metallkunde 93:345–351

    CAS  Google Scholar 

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA 100:10603–10606

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Peattie A (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    Article  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan W-P, Kenny WT, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Sitti M, Peattie A, Hansen W, Sponberg S, Liang YA, Kenny T, Fearing R, Israelachvili J, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99:12252–12256

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Buehler M, Cutkosky M, Fearing R, Full RJ, Goldman D, Groff R, Provancher W, Rizzi AA, Saranli U, et al. (2005) Robotics in scansorial environments. Proc SPIE 5804:291–302

    Google Scholar 

  • Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006) Dynamics of geckos running vertically. J Exp Biol 209:260–272

    Article  PubMed  CAS  Google Scholar 

  • Baier RE, Shafrin EG, Zisman WA (1968) Adhesion: mechanisms that assist or impede it. Science 162:1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1998) The lotus-effect: a paradigm for the use of a natural design for technical application. Am J Bot 85:6

    Google Scholar 

  • Baum C, Meyer W, Stelzer R, Fleischer L-G, Siebers D (2002) Average nanorough skin surface of the pilot whale (Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based on nanoroughness. Mar Biol 140:653–657

    Article  Google Scholar 

  • Bereiter-Hahn J, Matoltsy AG, Richards KS (1984) Biology of the integument 2: vertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bonser RHC (2000) The Young’s modulus of ostrich claw keratin. J Mater Sci Lett 19:1039–1040

    Article  CAS  Google Scholar 

  • Bonser RHC, Purslow PP (1995) The Young’s modulus of feather keratin. J Exp Biol 198:1029–1033

    PubMed  CAS  Google Scholar 

  • Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Chen W, Fadeev AY, Hsieh MC, Oner D, Youngblood J, McCarthy T (1999) Ultrahydrophobic and ultralyophobic surface: some comments and examples. Langmuir 15:3395–3399

    Article  CAS  Google Scholar 

  • Dahlquist CA (1969) Pressure-sensitive adhesives. In: Patrick RL (ed) Treatise on adhesion and adhesives, vol 2. Dekker, New York, pp. 219–260

    Google Scholar 

  • Dellit W-D (1934) Zur Anatomie und Physiologie der Geckozehe. Jena Z Naturw 68:613–656

    Google Scholar 

  • Fraser RDB, Parry DAD (1996) The molecular structure of reptilian keratin. Int J Biol Macromol 19:207–211

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36

    Article  PubMed  CAS  Google Scholar 

  • Gay C, Leibler L (1999) Theory of tackiness. Phys Rev Lett 82:936–939

    Article  CAS  Google Scholar 

  • Geisler B, Dittmore A, Gallery B, Stratton T, Fearing R, Autumn K (2005) Deformation of isolated gecko setal arrays: bending or buckling? 2. Kinetics. Society of Integrative and Comparative Biology, San Diego

    Google Scholar 

  • Hansen W, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102:385–389

    Article  PubMed  CAS  Google Scholar 

  • Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62:307–362

    Article  Google Scholar 

  • Huber G, Gorb S, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    Article  PubMed  Google Scholar 

  • Irschick DJ, Austin CC, Petren K, Fisher R, Losos JB, Ellers O (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol J Linn Soc 59:21–35

    Article  Google Scholar 

  • Israelachvili J (1992) Intermolecular and surface forces. Academic, New York

    Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson RE, Dettre RH (1963) Contact angle hysteresis I. Study of an idealized rough surface, chapter 7. In: Fowkes FM (ed) Advances in chemistry series, vol 43, American Chemical Society, Washington DC, pp. 112–129

  • Johnson KL, Kendall K, Roberts AD (1973) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:310–313

    Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, New York

    Google Scholar 

  • Maderson PFA (1964) Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203:780–781

    Article  Google Scholar 

  • Neinhuis C (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  • Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19:1249–1253

    Article  CAS  Google Scholar 

  • Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20:8209–8213

    Article  PubMed  CAS  Google Scholar 

  • Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614–7621

    Article  CAS  Google Scholar 

  • Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437

    Article  CAS  Google Scholar 

  • Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17:R1–R62

    Article  CAS  Google Scholar 

  • Pocius AV (2002) Adhesion and adhesives technology: an introduction, 2nd edn. Hanser Verlag, Munich

    Google Scholar 

  • Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117:271–294

    Article  PubMed  CAS  Google Scholar 

  • Russell AP (1975) A contribution to the functional morphology of the foot of the tokay, Gekko gecko (reptilia, gekkonidae). J Zool (Lond) 176:437–476

    Article  Google Scholar 

  • Russell AP (1979) Parallelism and integrated design in the foot structure of gekkonine and diplodactyline geckos. Copeia 1979:1–21

    Article  Google Scholar 

  • Russell AP (1986) The morphological basis of weight-bearing in the scansors of the tokay gecko (reptilia: Sauria). Can J Zool 64:948–955

    Article  Google Scholar 

  • Schleich HH, Kästle W (1986) Ultrastrukturen an Gecko-Zehen (reptilia: Sauria: Gekkonidae). Amphib-Reptil 7:141–166

    Google Scholar 

  • Sitti M, Fearing RS (2003) Synthetic gecko foot-hair micro/nano structures as dry adhesives. J Adhes Sci Technol 17:1055–1073

    Article  CAS  Google Scholar 

  • Spolenak R, Gorb S, Gao HJ, Arzt E (2004) Effects of contact shape on the scaling of biological attachments. Proc Royal Soc Lond A 461:305–319

    Article  Google Scholar 

  • Spolenak R, Gorb S, Arzt E (2005) Adhesion design maps for bio-inspired attachment systems. Acta Biomater 1:5–13

    Article  PubMed  Google Scholar 

  • Stewart G, Daniel R (1972) Scales of the lizard gekko gecko: surface structure examined with the scanning electron microscope. Copeia 1972(2):252–257

    Article  Google Scholar 

  • Vinson J, Vinson J-M (1969) The saurian fauna of the Mascarene Islands. Bull Maurit Inst 6:203–320

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1982) Mechanical design in organisms. Princeton University Press, Princeton

    Google Scholar 

  • Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–1511

    Article  PubMed  Google Scholar 

  • Wolfram E, Faust R (1978) Liquid drops on a tilted plate, contact angle hysteresis and the young contact angle. In: Padday JF (ed) Wetting, spreading, and adhesion. Academic, London, pp. 213–226

    Google Scholar 

Download references

Acknowledgments

We thank Jon Barnes, Andrew Dittmore, Valeurie Friedman, Bill Geisler, Stas Gorb, Jacob Israelachvili, Allen Liu, Carmel Majidi, and an anonymous reviewer. Supported by DARPA N66001-03-C-8045, DARPA N660001-00-C-8047, NSF-NIRT 0304730, and Johnson & Johnson/DePuy Mitek Corporation. This study complies with “Principles of animal care,” publication no. 86-23, revised 1985 of the National Institute of Health, and also with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kellar Autumn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Autumn, K., Hansen, W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A 192, 1205–1212 (2006). https://doi.org/10.1007/s00359-006-0149-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0149-y

Keywords

Navigation