Skip to main content
Log in

Analysis of spectral shape in the barn owl auditory system

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In a behavioral experiment, we investigated how efficiently barn owls (Tyto alba) could detect changes in the spectral profile of multi-component auditory signals with stochastic envelope patterns. Signals consisted of one or five bands of noise (bandwidth 4, 16, or 64 Hz each; center frequencies 1.02, 1.43, 2.0, 2.8, 3.92 kHz). We determined increment thresholds for the 2 kHz component for three conditions: single-band condition (only the 2 kHz component), all five noise bands with the envelope fluctuations of the bands being either correlated or uncorrelated. Noise bandwidth had no significant effect on increment detection. Increment thresholds for the different conditions, however, differed significantly. Thresholds in correlated conditions were generally the lowest of all conditions, whereas, thresholds in uncorrelated conditions mostly resulted in the highest thresholds. This can be interpreted as evidence for comodulation masking release in barn owls. If the increment in the 2 kHz component is balanced by decrementing the four flanking bands in amplitude, increment detection thresholds are not affected. The data suggest that the barn owls used information from simultaneous spectral comparison across different frequency channels to detect spectral changes in multi-component noise signals rather than sequential comparison of overall stimulus levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CMR:

Comodulation masking release

SPL:

Sound pressure level

References

  • Bacon SP, Viemeister NF (1985) Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. Audiology 24:117–134

    Article  PubMed  CAS  Google Scholar 

  • Bernstein LR, Green DM (1987a) The profile-analysis bandwidth. J Acoust Soc Am 81:1888–1895

    Article  Google Scholar 

  • Bernstein LR, Green DM (1987b) Detection of simple and complex changes of spectral shape. J Acoust Soc Am 82:1587–1592

    Article  PubMed  CAS  Google Scholar 

  • Bos CE, de Boer E (1966) Masking and discrimination. J Acoust Soc Am 39:708–715

    Article  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Buus S (1990) Level discrimination of frozen and random noise. J Acoust Soc Am 87:2643–2654

    Article  PubMed  CAS  Google Scholar 

  • Dent ML, Klump GM, Schwenzfeier C (2002) Temporal modulation transfer functions in the barn owl (Tyto alba). J Comp Physiol A 187:937–943

    Article  Google Scholar 

  • Dooling RJ, Okanoya K (1995) The method of constant stimuli in testing auditory sensitivity in small birds. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in comparative psychoacoustics. Birkhäuser, Basel Boston Berlin, pp 161–169

    Google Scholar 

  • Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer, Berlin Heidelberg New York, pp 308–359

    Google Scholar 

  • Dooling RJ, Leek MR, Gleich O, Dent ML (2002) Auditory temporal resolution in birds: discrimination of harmonic complexes. J Acoust Soc Am 112:748–759

    Article  PubMed  Google Scholar 

  • Drennan WR, Watson CS (2001) Sources of variation in profile analysis. II. Component spacing, dynamic changes, and roving level. J Acoust Soc Am 110:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182:695–702

    Article  Google Scholar 

  • Fantini DA, Moore BCJ (1994) Profile analysis and comodulation detection differences using narrow bands of noise and their relation to comodulation masking release. J Acoust Soc Am 95:2180–2191

    Article  PubMed  CAS  Google Scholar 

  • Fantini DA, Moore BCJ, Schooneveldt GP (1993) Comodulation masking release as a function of type of signal, gated or continuous masking, monaural or dichotic presentation of flanking bands, and center frequency. J Acoust Soc Am 93:2106–2115

    Article  PubMed  CAS  Google Scholar 

  • Grantham DW, Yost WA (1982) Measures of intensity discrimination. J Acoust Soc Am 72:406–410

    Article  PubMed  CAS  Google Scholar 

  • Green DM (1988) Profile analysis: auditory intensity discrimination. Oxford University Press, New York

    Google Scholar 

  • Green DM (1992) The number of components in profile analysis tasks. J Acoust Soc Am 91:1616–1623

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Kidd G (1983) Further studies of auditory profile analysis. J Acoust Soc Am 73:1260–1265

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Green DM, Kidd G, Picardi MC (1983) Successiv versus simultaneus comparison in auditory intensity discrimination. J Acoust Soc Am 73:639–643

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Mason CR, Kidd G (1984) Profile analysis: critical bands and duration. J Acoust Soc Am 75:1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Grose JH, Hall JW (1993) Comodulation masking release: is comodulation sufficient? J Acoust Soc Am 93:2896–2902

    Article  PubMed  CAS  Google Scholar 

  • Hacker MJ, Ratcliff R (1979) A revised table of d’ for M-alternative forced choice. Percept Psychophys 26:168–170

    Google Scholar 

  • Hall JW, Grose JH (1988) Comodulation masking release: evidence for multiple cues. J Acoust Soc Am 84:1669–1675

    Article  PubMed  Google Scholar 

  • Hall JW, Grose JH (1990) Comodulation masking release and auditory grouping. J Acoust Soc Am 88:119–125

    Article  PubMed  Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectrotemporal pattern analysis. J Acoust Soc Am 76:50–56

    Article  PubMed  CAS  Google Scholar 

  • Hall JW, Grose JH, Haggard MP (1988) Comodulation masking release for multicomponent signals. J Acoust Soc Am 83:677–686

    Article  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    Article  PubMed  CAS  Google Scholar 

  • Keller CH, Takahashi TT (2000) Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl’s inferior colliculus. J Neurophysiol 84:2638–2650

    PubMed  CAS  Google Scholar 

  • Klump GM, Langemann U (1995) Comodulation masking release in a songbird. Hear Res 87:157–164

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424

    Google Scholar 

  • Konishi M, Kenuk AS (1975) Discrimination of noise spectra by memory in the barn owl. J Comp Physiol 97:55–58

    Article  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–2221

    PubMed  Google Scholar 

  • Lawson JL, Uhlenbeck GE (1950) Threshold signals. McGraw-Hill, New York

    Google Scholar 

  • Lentz JJ, Richards VM (1998) The effects of amplitude perturbation and increasing numbers of components in profile analysis. J Acoust Soc Am 103:535–541

    Article  PubMed  CAS  Google Scholar 

  • Mason CR, Kidd G, Hanna T, Green DM (1984) Profile analysis and level variation. Hear Res 13:269–275

    Article  PubMed  CAS  Google Scholar 

  • Oxenham AJ, Buus S (2000) Level discrimination of sinusoids as a function of duration and level for fixed-level, roving-level, and across-frequency conditions. J Acoust Soc Am 107:1605–1614

    Article  PubMed  CAS  Google Scholar 

  • Payne RS (1971) Acoustic location of pray by barn owls (Tyto alba). J Exp Biol 54:535–573

    PubMed  CAS  Google Scholar 

  • Rice SO (1954) Mathematical analysis of random noise. In: Wax N (ed) Selected papers on noise and stochastic processes. Dover Publications Inc, New York, pp 133–294

    Google Scholar 

  • Scharf B (1962) Loudness summation and spectrum shape. J Acoust Soc Am 34:228–233

    Article  Google Scholar 

  • Schooneveldt GP, Moore BCJ (1989) Comodulation masking release (CMR) as a function of masker bandwidth, modulator bandwidth, and signal duration. J Acoust Soc Am 85:273–281

    Article  PubMed  CAS  Google Scholar 

  • Swets JA (1964) Signal detection and recognition by human observers. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (FOR 306 “Hörobjekte”). The care and treatment of the birds were in accordance with the procedures of animal experimentation approved by the Government of Upper Bavaria, Germany. All procedures were performed in compliance with the NIH Guide for the Care and Use of Laboratory Animals (1996). We thank Deborah Fantini for the helpful comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Langemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langemann, U., Zokoll, M.A. & Klump, G.M. Analysis of spectral shape in the barn owl auditory system. J Comp Physiol A 191, 889–901 (2005). https://doi.org/10.1007/s00359-005-0015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0015-3

Keywords

Navigation