Skip to main content
Log in

The photoactivation energy of the visual pigment in two spectrally different populations of Mysis relicta (Crustacea, Mysida)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We report the first study of the relation between the wavelength of maximum absorbance (λmax) and the photoactivation energy (E a) in invertebrate visual pigments. Two populations of the opossum shrimp Mysis relicta were compared. The two have been separated for 9,000 years and have adapted to different spectral environments (“Sea” and “Lake”) with porphyropsins peaking at λmax=529 nm and 554 nm, respectively. The estimation of E a was based on measurement of temperature effects on the spectral sensitivity of the eye. In accordance with theory (Stiles in Transactions of the optical convention of the worshipful company of spectacle makers. Spectacle Makers’ Co., London, 1948), relative sensitivity to long wavelengths increased with rising temperature. The estimates calculated from this effect are E a,529=47.8±1.8 kcal/mol and E a,554=41.5±0.7 kcal/mol (different at P<0.01). Thus the red-shift of λmax in the “Lake” population, correlating with the long-wavelength dominated light environment, is achieved by changes in the opsin that decrease the energy gap between the ground state and the first excited state of the chromophore. We propose that this will carry a cost in terms of increased thermal noise, and that evolutionary adaptation of the visual pigment to the light environment is directed towards maximizing the signal-to-noise ratio rather than the quantum catch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C:

Cold

E a :

Photoactivation energy

ERG:

Electroretinogram

IR:

Infrared

S:

Relative fractional sensitivity

SNR:

Signal-to-noise ratio

W:

Warm

References

  • Aho A-C, Donner K, Hydén C, Larsen LO, Reuter T (1988) Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334:348–350

    Article  PubMed  CAS  Google Scholar 

  • Aho A-C, Donner K, Helenius S, Larsen LO, Reuter T (1993a) Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell responss and prey-catching accuracy. J Comp Physiol A 172:671–682

    Article  CAS  Google Scholar 

  • Aho A-C, Donner K, Reuter T (1993b) Retinal origins of the temperature effect on absolute visual sensitivity in frogs. J Physiol 463:501–521

    CAS  Google Scholar 

  • Ala-Laurila P, Saarinen P, Albert R, Koskelainen A, Donner K (2002) Temperature effects on spectral properties of red and green rods in toad retina. Vis Neurosci 19:781–792

    Article  PubMed  Google Scholar 

  • Ala-Laurila P, Albert R-J, Saarinen P, Koskelainen A, Donner K (2003) The thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties. Vis Neurosci 20:411–419

    Article  PubMed  Google Scholar 

  • Ala-Laurila P, Donner K, Koskelainen A (2004a) Thermal activation and photoactivation of visual pigments. Biophys J 86:3653–3662

    Article  CAS  Google Scholar 

  • Ala-Laurila P, Pahlberg J, Koskelainen A, Donner K (2004b) On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Vision Res 44:2153–2158

    Article  Google Scholar 

  • Audzijonytė A, Väinölä R (2005) Diversity and distributions of circumpolar fresh- and brackish-water Mysis (Crustacea: Mysida): descriptions of M. relicta Lovén, 1862, M. salemaai n. sp., M. segerstralei n. sp. and M. diluviana n. sp., based on molecular and morphological characters. Hydrobiologia (in press)

  • Audzijonytė A, Pahlberg J, Väinölä R, Lindström M (2005) Spectral sensitivity differences in two sibling Mysis species (Crustacea, Mysida): adaptation or phylogenetic constraints? J Exp Mar Biol Ecol (in press)

  • Barlow HB (1956) Retinal noise and absolute threshold. J Opt Soc Am 46:634–639

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB (1957) Purkinje shift and retinal noise. Nature 179:255–256

    Article  PubMed  CAS  Google Scholar 

  • Baylor DA, Matthews G, Yau K-W (1980) Two components of electrical dark noise intoad retinal rod outer segments. J Physiol 309:591–621

    PubMed  CAS  Google Scholar 

  • Baylor DA, Nunn BJ, Schnapf JL (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol 357:575–607

    PubMed  CAS  Google Scholar 

  • Cronin TW, Caldwell RL (2002) Tuning of photoreceptor function in three mantis shrimp species that inhabit a range of depths. II. Filter pigments. J Comp Physiol A 188:187–197

    Article  Google Scholar 

  • Dartnall HJA, Lythgoe JN (1965) The spectral clustering of visual pigments. Vis Res 5:81–100

    Article  PubMed  CAS  Google Scholar 

  • Donner K (1992) Noise and the absolute thresholds of cone and rod vision. Vis Res 32:853–866

    Article  PubMed  CAS  Google Scholar 

  • Donner K, Firsov ML, Govardovskii VI (1990) The frequency of isomerization-like ‘dark’ events in rhodopsin and porphyropsin rods of the bull-frog retina. J Physiol 428:673–692

    PubMed  CAS  Google Scholar 

  • Dontsov AE, Fedorovich IB, Lindström M, Ostrovsky MA (1999) Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta (Crustacea, Mysidacea) populations, with different light damage resistance. J Comp Physiol B 169:157–164

    Article  CAS  Google Scholar 

  • Firsov ML, Govardovskii VI (1990) Dark noise of visual pigments with different absorption maxima (in Russian). Sensornye Sistemy 4:25–34

    Google Scholar 

  • Goldsmith TH (1977) The effect of screening pigment on the spectral sensitivity of some crustacea with scotopic (superposition) eyes. Vis Res 18:475–482

    Article  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin D, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    Article  PubMed  CAS  Google Scholar 

  • Jokela-Määttä M, Pahlberg J, Lindström M, Porter M, Zak P, Ostrovsky M, Cronin T, Donner K (2005) Visual pigment absorbance and spectral sensitivity of the Mysis relicta species group (Crustacea, Mysida) in different light environments. J Comp Physiol A (in press)

  • Koskelainen A, Ala-Laurila P, Fyhrquist N, Donner K (2000) Measurement of thermal contribution to photoreceptor sensitivity. Nature 403:220–223

    Article  PubMed  CAS  Google Scholar 

  • Lewis PR (1955) A theoretical interpretation of spectral sensitivity curves at long wavelengths. J Physiol 130:45–52

    PubMed  CAS  Google Scholar 

  • Lindström M (2000) Eye function of Mysidacea (Crustacea) in the northern Baltic Sea. J Exp Mar Biol Ecol 246:85–101

    Article  PubMed  Google Scholar 

  • Lindström M, Nilsson HL (1983) Spectral and visual sensitivities of Cirroleana borealis Liljeborg, a deep-water isopod (Crustacea, Flabellifera). J Exp Mar Biol Ecol 69:243–256

    Article  Google Scholar 

  • Lindström M, Nilsson HL (1988) Eye function of Mysis relicta Lovén (Crustacea) from two photic environments. Spectral sensitivity and light tolerance. J Exp Mar Biol Ecol 120:23–37

    Article  Google Scholar 

  • Lindström M, Nilsson HL, Meyer-Rochow VB (1988) Recovery from light-induced sensitivity loss in the eye of the crustacean Mysis relicta in relation to temperature: a study of ERG-determined V/log I relationships and morphology at 4°C and 14°C. Zool Sci 5:743–757

    Google Scholar 

  • Okada T, Ernst OP, Palczewski K, Hoffman KP (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 26:318–324

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Baylor DA (2000) Origin and functional impact of dark noise in retinal cones. Neuron 26:181–186

    Article  PubMed  CAS  Google Scholar 

  • Ruuhijärvi R (1974) A general description of the oligotrophic Lake Pääjärvi, southern Finland, and the ecological studies on it. Ann Bot Fenn 11:95–104

    Google Scholar 

  • Srebro R (1966) A thermal component of excitation in the lateral eye of Limulus. J Physiol (Lond) 35:495–517

    Google Scholar 

  • Stiles WS (1948) The physical interpretation of the spectral sensitivity curve of the eye. In: Transactions of the optical convention of the worshipful company of spectacle makers. Spectacle Makers’ Co., London, pp 97–107

  • Väinölä R (1986) Sibling species and phylogenetic relationships of Mysis relicta (Crustacea, Mysidacea). Ann Zool Fenn 23:207–221

    Google Scholar 

  • Väinölä R, Riddoch BJ, Ward RD, Jones RI (1994) Genetic zoogeography of the Mysis relicta species group (Crustacea: Mysidacea) in northern Europe and North America. Can J Fish Aquat Sci 51:1490–1505

    Google Scholar 

  • Yokoyama S, Yokoyama R (2000) Comparative molecular biology of visual pigments. In: Stavenga DG, DeGrip WJ, Pugh EN Jr (eds) Handbook of biological physics: molecular mechanisms of visual transduction 3. Elsevier, Amsterdam, pp 257–296

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (grants 72615 and 206221), by the Finnish Society of Sciences and Letters, by the Magnus Ehrnrooth Foundation, by the Ella and Georg Ehrnrooth Foundation, by the Oskar Öflund Foundation and by Svenska Kulturfonden. The present experiments comply with the Principles of animal care (publication No. 86–23, revised 1985) of the National Institute of Health, and with the corresponding national current laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Pahlberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahlberg, J., Lindström, M., Ala-Laurila, P. et al. The photoactivation energy of the visual pigment in two spectrally different populations of Mysis relicta (Crustacea, Mysida). J Comp Physiol A 191, 837–844 (2005). https://doi.org/10.1007/s00359-005-0005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0005-5

Keywords

Navigation