Skip to main content
Log in

Long-distance navigation in the wandering desert spider Leucorchestris arenicola: can the slope of the dune surface provide a compass cue?

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Males of the nocturnal spider Leucorchestris arenicola (Araneae: Sparassidae) wander long distances over seemingly featureless dune surfaces in the Namib Desert searching for females. The spiders live in burrows to which they return after nearly every such excursion. While the outward path of an excursion may be a meandering search, the return path is often a nearly straight line leading towards the burrow. This navigational behaviour resembles that of path integration known from other arthropods, though on a much larger scale (over tens to hundreds of meters). Theoretically, precise navigation by path integration over long distances requires an external compass in order to adjust for inevitable accumulation of navigational errors. As a first step towards identifying any nocturnal compass cues used by the male spiders, a method for detailed 3-D recordings of the spider’s paths was developed. The 3-D reconstructions of the paths revealed details about the processes involved in the spiders’ nocturnal way of navigation. Analyses of the reconstructed paths suggest that gravity (slope of the dune surface) is an unlikely parameter used in path integration by the L. arenicola spiders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. A
Fig. 2. A
Fig. 3. A
Fig. 4. A
Fig. 5. A
Fig. 6.

Similar content being viewed by others

References

  • Bartels M (1929) Sinnesphysiologische und physiologische Untersuchungen an der Trichterspinne Agelena labyrinthica (Cl.). Z Vergl Physiol 10:527–591

    Google Scholar 

  • Barth FG (2002) A spider’s world, senses and behavior. Springer, Berlin Heidelberg NewYork

  • Benhamou S, Séguinot V (1995) How to find one’s way in the labyrinth of path integration models. J Theor Biol 174:463–466

    Article  Google Scholar 

  • Benhamou S, Sauvé JP, Bovet P (1990) Spatial memory in large-scale movements: efficiency and limitations of the egocentric coding process. J Theor Biol 145:1–12

    Google Scholar 

  • Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63

    Article  CAS  PubMed  Google Scholar 

  • Brownell PH (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479–482

    Google Scholar 

  • Brownell PH (2001) Sensory ecology and orientational behaviors. In: Brownell PH, Polis GA (eds) Scorpion biology and research. Oxford University Press, pp 159–183

  • Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034

    Google Scholar 

  • Dacke M, Nilsson D-E, Warrant EJ, Blest AD, Land MF, O’Carroll DC (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401:470–473

    Article  CAS  Google Scholar 

  • Dyer FC (1996) Spatial memory and navigation by honeybees on the scale of the foraging range. J Exp Biol:199:147–154

    Google Scholar 

  • Frier HJ, Edwards E, Smith C, Neale S, Collett TS (1996) Magnetic compass cues and visual pattern learning in honeybees. J Exp Biol 199:1353–1361

    PubMed  Google Scholar 

  • Frisch K von (1967) The dance language and orientation of bees. The Belknap Press of Harvard University Press, Cambridge, Massachusetts

  • Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 204:2063–2072

    CAS  PubMed  Google Scholar 

  • Gal J, Horvath G, Barta A, Wehner R (2001) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full moon: comparison of the polarization of moonlit and sunlit skies. J Geophys Res D19 106:22647–22653

    Google Scholar 

  • Görner P, Class B (1985) Homing behavior and orientation in the funnel-web spider, Agelena labyrinthica Clerck. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 275–297

  • Henschel JR (1987) Sand-burrowing spiders: how do they do it? Bull Desert Res Unit 7:11

    Google Scholar 

  • Henschel JR (1990a) The biology of Leucorchestris arenicola (Araneae: Heteropodidae), a burrowing spider of the Namib Desert. In: Seely MK (ed) Namib ecology: 25 years of Namib research. Transvaal Museum monograph no. 7. Transvaal Museum, Pretoria, pp 115–127

  • Henschel JR (1990b) Spiders wheel to escape. S Afr J Sci 86:151–152

    Google Scholar 

  • Henschel JR (1994) Diet and foraging behaviour of huntsman spiders in the Namib dunes (Araneae: Heteropodidae). J Zool (Lond) 234:239–251

    Google Scholar 

  • Henschel JR (2002) Long distance wandering and mating by the dancing white lady spider (Leucorchestris arenicola) (Araneae, Sparrassidae) across Namib dunes. J Arachnol 30:321–330

    Google Scholar 

  • Hill DE (1979) Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae). Behav Ecol Sociobiol 5:301–322

    Google Scholar 

  • Jäger P (1999) Sparassidae - the valid scientific name for the huntsman spiders (Arachnida: Araneae). Arachnol Mitt 17:1–10

    Google Scholar 

  • Lawrence RF (1962) Spiders of the Namib Desert. Ann Transvaal Mus 10:197–211

    Google Scholar 

  • Lawrence RF (1965) New and little known Arachnida from the Namib Desert, S.W. Africa. Sci Pap Namib Desert Res Stn 27:1–12

    Google Scholar 

  • Menzel R, Geiger K, Joerges J, Müller U, Chittka L (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 55:139–152

    Google Scholar 

  • Mittelstaedt H (1985) Analytical cybernetics of spider navigation. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 298–316

  • Mittelstaedt H, Mittelstaedt ML (1982) Homing by path Integration. In: Papi F, Wallraff HG (eds) Avian navigation. International Symposium on Avian Navigation (ISAN), Tirrenia (Pisa). Springer, Berlin Heidelberg New York, pp 290–297

  • Mouritsen H, Frost BJ (2002) Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci USA 99:10162–10166

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5278–5290

    Google Scholar 

  • Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530

    Google Scholar 

  • Papke MD, Reichert SE, Schultz S (2001) An airborne female pheromone associated with male attraction and courtship in a desert spider. Anim Behav 61:877–886

    Article  Google Scholar 

  • Pollard SD, Macnab AM, Jackson RR (1987) Communication with chemicals: pheromones and spiders. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin Heidelberg New York, pp 133–141

  • Rickli M, Leuthold RH (1988) Homing in harvester termites: evidence of magnetic orientation. Ethology 77:209–216

    Google Scholar 

  • Robinson MD, Seely MK (1980) Physical and biotic environments of the southern Namib dune ecosystem. J Arid Environ 3:183–203

    Google Scholar 

  • Rossel S, Wehner R (1984) Celestial orientation in bees: the use of spectral cues. J Comp Physiol A 155:605–613

    Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Google Scholar 

  • Seyfarth EA, Barth FG (1972) Compound slit sense organs on the spider leg: mechanoreceptors involved in kinesthetic orientation. J Comp Physiol 78:176–191

    Google Scholar 

  • Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Ideothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148

    Google Scholar 

  • Srinivasan MV, Zhang SW, Lehrer M, Collett TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199:237–244

    PubMed  Google Scholar 

  • Ugolini A, Pezzani A (1995) Magnetic compass and learning of the Y-axis (sea-land) direction in the marine isopod Idotea baltica basteri. Anim Behav 50:295–300

    Article  Google Scholar 

  • Vollrath F, Nørgaard T, Krieger M (2002) Radius orientation in the garden cross spider Araneus diadematus. In: Toft S, Scharff N (eds) Proceedings of the 19th European Colloquium of Arachnology, Aarhus 17–22 July 2000. Aarhus University Press, pp 107–116

  • Wehner R (1992) Arthropods. In: Papi F (ed) Animal Homing. Chapman and Hall, London, pp 45–144

  • Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschr Zool 39:103–143

    Google Scholar 

  • Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185

  • Wehner R, Duelli P (1971) The spatial orientation of desert ants, Cataglyphis bicolor, before sunrise and after sunset. Experientia 27:1364–1366

    Google Scholar 

  • Wehner R, Wehner S (1986) Path integration in desert ants. Approaching a long-standing puzzle in insect navigation. Monit Zool Ital 20:309–331

    Google Scholar 

  • Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne’s thread? Ethol Ecol Evol 2:27–48

    Google Scholar 

  • Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Akad Wiss Lit Mainz Abh Math Naturwiss Kl. Fischer, Stuttgart

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

  • Wehner R, Gallizzi K, Frei C, Vesely M (2002) Calibration processes in desert ant navigation: vector courses and systematic search. J Comp Physiol A 188:683–693

    CAS  Google Scholar 

  • Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795–798

    CAS  PubMed  Google Scholar 

  • Wohlgemuth S, Ronacher B, Wehner R (2002) Distance estimation in the third dimension in desert ants. J Comp Physiol A 188:273–281

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, London

Download references

Acknowledgements

We thank the Gobabeb Training and Research Centre and the Ministry of Environment and Tourism for permission to work in the Namib-Naukluft Park, the Swiss National Science Foundation for funding the project (grant no. 31-61844.00 to R.W.), the Department of Zoology, University of Zürich, Switzerland and the Department of Zoology, University of Aarhus, Denmark, for equipment and infrastructural support. We are grateful also to Torben Geilman and Klaus Birkhofer for valuable help and fruitful discussions. This fieldwork complies with Namibian law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nørgaard, T., Henschel, J.R. & Wehner, R. Long-distance navigation in the wandering desert spider Leucorchestris arenicola: can the slope of the dune surface provide a compass cue?. J Comp Physiol A 189, 801–809 (2003). https://doi.org/10.1007/s00359-003-0455-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0455-6

Keywords

Navigation