Skip to main content
Log in

Visually guided orientation in flies: case studies in computational neuroethology

Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

To understand the functioning of nervous systems and, in particular, how they control behaviour we must bridge many levels of complexity from molecules, cells and synapses to perception behaviour. Although experimental analysis is a precondition for understanding by nervous systems, it is in no way sufficient. The understanding is aided at all levels of complexity by modelling. Modelling proved to be an inevitable tool to test the experimentally established hypotheses. In this review it will by exemplified by three case studies that the appropriate level of modelling needs to be adjusted to the particular computational problems that are to be solved. (1) Specific features of the highly virtuosic pursuit behaviour of male flies can be understood on the basis of a phenomenological model that relates the visual input to the motor output. (2) The processing of retinal image motion as is experienced by freely moving animals can be understood on the basis of a model consisting of algorithmic components and components which represent a simple equivalent circuit of nerve cells. (3) Behaviourally relevant features of the reliability of encoding of visual motion information can be understood by modelling the transformation of postsynaptic potentials into sequences of spike trains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D.
Fig. 2A–C.
Fig. 3A–E.

Similar content being viewed by others

References

  • Bains S (1999) A machine with a fly's-eye view. Science 285:1472

    CAS  PubMed  Google Scholar 

  • Barberini CL, Horwitz GD, Newsome WT (2000) A comparison of spiking statistics in motion sensing neurons of flies and monkeys. In: Zanker JM, Zeil J (eds) Computational, neural and ecological constraints of visual motion processing. Springer, Berlin Heidelberg New York

  • Boeddeker N, Kern R, Egelhaaf M (2003) Chasing a dummy target: smooth pursuit and velocity control in male blowflies. Proc R Soc Lond Ser B 270:393–399

    Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306

    CAS  PubMed  Google Scholar 

  • Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. I. Passive membrane properties. J Comp Neurosci 3:313–336

    CAS  Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188:419–437

    Article  CAS  Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J Comput Neurosci 2:5–18

    CAS  PubMed  Google Scholar 

  • Dror RO, O'Carroll DC, Laughlin SB (2001) Accuracy of velocity estimation by Reichardt correlators. J Opt Soc Am A 18:241–252

    CAS  Google Scholar 

  • Egelhaaf M, Borst A (1993a) A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. J Neurosci 13:4563–4574

    CAS  PubMed  Google Scholar 

  • Egelhaaf M, Borst A (1993b) Movement detection in arthropods. In: Wallman J, Miles FA (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 53–77

  • Egelhaaf M, Kern R (2002) Vision in flying insects. Curr Opin Neurobiol 12:699–706

    Article  CAS  PubMed  Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56:69–87

    Google Scholar 

  • Egelhaaf M, Warzecha A-K (1999) Encoding of motion in real time by the fly visual system. Curr Opin Neurobiol 9:454–460

    Google Scholar 

  • Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Warzecha A-K (2002) Neural encoding of behaviourally relevant motion information in the fly. Trends Neurosci 94:94–100

    Google Scholar 

  • Franceschini N (1996) Engineering applications of small brains. FED J 7:38–52

    CAS  Google Scholar 

  • Franceschini N, Pichon JM, Blanes C (1992) From insect vision to robot vision. Philos Trans R Soc Lond B 337:283–294

    Google Scholar 

  • Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J Neurosci 17:4809–4819

    CAS  PubMed  Google Scholar 

  • Haag J, Borst A (2000) Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. J Neurophysiol 83:1039–1051

    CAS  PubMed  Google Scholar 

  • Haag J, Borst A (2001) Recurrent network interactions underlying flow-field selectivity of visual interneurons. J Neurosci 21:5685–5692

    CAS  PubMed  Google Scholar 

  • Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. II. Active membrane properties. J Comput Neurosci 4:349–369

    CAS  PubMed  Google Scholar 

  • Haag J, Vermeulen A, Borst A (1999) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. III. visual response properties. J Comput Neurosci 7:213–234

    CAS  PubMed  Google Scholar 

  • Harrison RR, Koch C (2000) A silicon implementation of the fly's optomotor control system. Neural Comput 12:2291–2304

    Article  CAS  PubMed  Google Scholar 

  • Hateren JH von, Schilstra C (1999) Blowfly flight and optic flow. II. Head movements during flight. J Exp Biol 202:1491–1500

    PubMed  Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 74:49–70

    Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga D, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 391–424

  • Horstmann W, Egelhaaf M, Warzecha A-K (2000) Synaptic interactions increase optic flow specificity. Eur J Neurosci 12:2157–2165

    CAS  PubMed  Google Scholar 

  • Huber SA, Franz MO, Bülthoff HH (1999) On robots and flies: modeling the visual orientation behavior of flies. Robot Auton Syst 29:227–242

    Article  Google Scholar 

  • Ilg UJ (1997) Slow eye movement. Progr Neurobiol 53:293–329

    Article  CAS  Google Scholar 

  • Kern R, Lutterklas M, Egelhaaf M (2000) Neural representation of optic flow experienced by unilaterally blinded flies on their mean walking trajectories. J Comp Physiol A 186:467–479

    Article  CAS  PubMed  Google Scholar 

  • Kern R, Petereit C, Egelhaaf M (2001a) Neural processing of naturalistic optic flow. J Neurosci 21:1–5

    Google Scholar 

  • Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M (2001b) Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network Comput Neural Syst 12:351–369

    Article  CAS  Google Scholar 

  • Kimmerle B, Egelhaaf M (2000) Performance of fly visual interneurons during object fixation. J Neurosci 20:6256–6266

    CAS  PubMed  Google Scholar 

  • Krapp HG (2000) Neuronal matched filters for optic flow processing in flying insects. In: Lappe M (ed) Neuronal processing of optic flow. Academic Press, San Diego, pp 93–120

  • Kretzberg J, Egelhaaf M, Warzecha A-K (2001) Membrane potential fluctuations determine the precision of spike timing and synchronous activity: a model study. J Comput Neurosci 10:79–97

    Article  CAS  PubMed  Google Scholar 

  • Land MF (1992) Visual tracking and pursuit: Humans and arthropods compared. J Insect Physiol 38:939–951

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). A description and analysis. J Comp Physiol 89:331–357

    Google Scholar 

  • Lindemann JP, Kern R, Michaelis C, Meyer P, Hateren JH van, Egelhaaf M (2003) FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Res 43:779–791

    Article  CAS  PubMed  Google Scholar 

  • Liu S-C, Usseglio-Viretta A (2000) Visuo-motor fly-like responses of a robot using a VLSI motion-sensitive chip. Proc 2nd ICSC Symp Neural Comput

  • Reichardt W, Poggio (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys 9:311–375

    CAS  PubMed  Google Scholar 

  • Ruyter van Steveninck Rd, Bialek W (1995) Reliability and statistical efficiency of a blowfly movement-sensitive neuron. Philos Trans R Soc Lond B 348:321–340

    Google Scholar 

  • Ruyter van Steveninck Rd, Borst A, Bialek W (2001) Real-time encoding of motion: answerable questions and questionable answers from the fly's visual system. In: Zanker JM, Zeil J (eds) Motion vision. Springer, Berlin Heidelberg New York, pp 279–306

  • Schilstra C, Hateren JH von (1998) Stabilizing gaze in flying blowflies. Nature 395:654

    Article  CAS  PubMed  Google Scholar 

  • Schilstra C, Hateren JH von (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J Exp Biol 202:1481–1490

    PubMed  Google Scholar 

  • Single S, Haag J, Borst A (1997) Dendritic computation of direction selectivity and gain control in visual interneurons. J Neurosci 17:6023–6030

    CAS  PubMed  Google Scholar 

  • Wagner H (1986) Flight performance and visual control of the flight of the free-flying housefly (Musca domestica). II. Pursuit of targets. Philos Trans R Soc Lond B 312:553–579

    Google Scholar 

  • Warzecha A-K, Egelhaaf M (1997) How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information? Eur J Neurosci 9:1365–1374

    Google Scholar 

  • Warzecha A-K, Egelhaaf M (1999) Variability in spike trains during constant and dynamic stimulation. Science 283:1927–1930

    CAS  PubMed  Google Scholar 

  • Warzecha A-K, Egelhaaf M (2001) Neuronal encoding of visual motion in real-time. In: Zanker JM, Zeil J (eds) Processing visual motion in the real world: a survey of computational, neural, and ecological constraints. Springer, Berlin Heidelberg New York, pp 239–277

  • Warzecha A-K, Kretzberg J, Egelhaaf M (1998) Temporal precision of the encoding of motion information by visual interneurons. Curr Biol 8:359–368

    CAS  PubMed  Google Scholar 

  • Warzecha A-K, Kretzberg J, Egelhaaf M (2000) Reliability of a fly motion-sensitive neuron depends on stimulus parameters. J Neurosci 20:8886–8896

    CAS  PubMed  Google Scholar 

  • Warzecha A-K, Kurtz R, Egelhaaf M (2003) Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience (in press)

Download references

Acknowledgements

We are grateful to J. Grewe, K. Karmeier and R. Kurtz for critically reading a previous version of the paper. Our work is supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Egelhaaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egelhaaf, M., Böddeker, N., Kern, R. et al. Visually guided orientation in flies: case studies in computational neuroethology. J Comp Physiol A 189, 401–409 (2003). https://doi.org/10.1007/s00359-003-0421-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0421-3

Keywords

Navigation