Skip to main content
Log in

Quantum Computing vs. Coherent Computing

  • Invited Paper
  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

In this review article, we compare the performance of two computing systems: quantum computing and coherent computing. A layered architecture for circuit-model quantum computing, employing surface code quantum error correction, has been recently discussed. Using this concrete hardware platform, it is possible to provide resource analysis for executing the fault-tolerent quantum computing for prime number factoring and molecular eigen-energy calculation that cannot be solved by the present day computing systems. A particular quantum computing system could solve such problems on the time scale of 1-10 days by using 108 – 109 physical qubits.

We discuss an alternative computing system based on an injection-locked laser network wnicn is called a coherent computing system here. A three-dimensional Ising model is mapped onto the mutually injection-locked slave laser network, while the independent injection signal from a master laser implements a Zeeman Hamiltonian. In this computing system, an Ising spin taking either up or down state is represented by the polarization degrees of freedom, right or left circular polarizations, of the lasing photons in each slave laser. A spin-spin coupling coefficient is implemented by simple linear polarization optics connecting the two slave lasers. We numerically study the scaling law of the proposed machine against the anti-ferromagnetic Ising model with varying problem size M. A transient time to reach a steady state polarization configuration is inversely proportional to the locking bandwidth and does not depend on the problem size strongly up to M=1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladd T. D., Jelezko F., Laflamme R., Nakamura Y., Monroe C., O’Brien J. L.: “Quantum computers”. Nature 464, 45–53 (2010)

    Article  Google Scholar 

  2. Jones N.C., Van Meter R., Fower A. G., McMahon P. L., Kim J., Ladd T.D., Yamamoto Y.: “Layered architecture for quantum computing”. Phys. Rev. X 2, 031007 (2012)

    Article  Google Scholar 

  3. Utsunomiya S., Takata K., Yamamoto Y.: “Mapping of ising models onto injection-locked laser systems”. Opt. Express 19, 18091–18108 (2011)

    Article  Google Scholar 

  4. Garey M. R., Johnson D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  5. Binder K., Young A. A.: “Spin glasses: Experimental facts, theoretical concepts, and open questions” Rev. Mod. Phys, 58, 801–976 (1986)

    Article  Google Scholar 

  6. Dotsenko V.: Introduction to the Replica Theory of Disordered Statistical Systems. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  7. Nishimori H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, New York (2001)

    Book  MATH  Google Scholar 

  8. Das A., Chakrabarti B. K.: “Colloquium: Quantum annealing and analog quantum computation”. Rev. Mod. Phys 80, 1061–1081 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ray P., Chakrabarti B. K., Chakrabarti A.: “Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations”. Phys. Rev. B 39, 11828–11832 (1989)

    Article  Google Scholar 

  10. Appoloni B., Carvalho C., De Falco D.: “Quantum Stochastic Optimization”. Stocastic Processes Their Appl. 33, 233–244 (1989)

    Article  Google Scholar 

  11. Martonak R., Santoro G. E., Tosatti E.: “Quantum annealing by the pathintegral Monte Carlo method: The two-dimensional random Ising model”. Phys. Rev. B 66, 094203 (2002)

    Article  Google Scholar 

  12. Santoro G. E., Martonak R., Tosatti E., Car R.: “Theory of Quantum Annealing of an Ising Spin Glass”. Science, 295, 2427–2430 (2002)

    Article  Google Scholar 

  13. Santoro G. E., Tosatti E.: “Quantum to classical and back”. Nat. Phys. 3, 593–594 (2007)

    Article  Google Scholar 

  14. Somma R. D., Batista C. D.: “Quantum Approach to Classical Statistical Mechanics”. Phys. Rev. Lett. 99, 030603 (2007)

    Article  MathSciNet  Google Scholar 

  15. Brooke J., Bitko D., Rosenbau T.F., Aeppli G.: “Quantum Annealing of a Disordered Magnet”. Science, 284(5415), 779–781 (1999)

    Article  Google Scholar 

  16. 16. Aeppli, G. and Rosenbaum, T. F., in Quantum Annealing and Related Optimization Methods (Das, A. and Chakrabarti, B. K. eds.), Springer Verlag, Heidelberg, 2005.

  17. Steffen M., Van Dam W., Hogg T., Breyta G., Chuang I.: “Experimental Implementation of an Adiabatic Quantum Optimization Algorithm”. Phys. Rev. Lett. 90, 067903 (2003)

    Article  Google Scholar 

  18. Byrnes T., Yan K., Yamamoto Y.: “Optimization using Bose-Einstein condensation and measurement-feedback circuits”. New J. Phys 13, 113025 (2011)

    Article  Google Scholar 

  19. Yan K., Byrnes T., Yamamoto Y.: “Kinetic Monte Carlo study of accelerated optimization problem search using Bose-Einstein condensates”. Progress in Informatics 8, 1–9 (2011)

    Article  Google Scholar 

  20. Barahona F.: “On the computational complexity of Ising spin glass models”. J. Phys. A: Math. Gen. 15, 3241–3253 (1982)

    Article  MathSciNet  Google Scholar 

  21. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: “A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem”. Science, 292(5516), 472–475 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Young A.P., Knysh S., Smelyanskiy V.N.: “First-order phase transition in the quantum adiabatic algorithm”. Phys. Rev. Lett., 104(2), 020502 (2010)

    Article  Google Scholar 

  23. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Kobayashi S., Kimura T.: “Injection Locking in AIGaAs Semiconductor Laser”. IEEE J. Quantum Electron, 17(5), 681–689 (1981)

    Article  Google Scholar 

  25. Kobayashi S., Yamamoto , Y. , Kimura T.: “Optical FM signal amplification and FM noise reduction in an injection locked AlGaAs semiconductor laser”. Electron. Lett., 17(22), 849–851 (1981)

    Article  Google Scholar 

  26. Gillner L., Bjork G., Yamamoto Y.: “Quantum noise properties of an injection-locked laser oscillator with pump-noise suppression and squeezed injection”. Phys. Rev A, 41(9), 5053–5065 (1990)

    Article  Google Scholar 

  27. Glauber R. J.: “Coherent and incoherent states of radiation field”. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  Google Scholar 

  28. Sudarshan E.C.G.: “Equivalence of semiclassical and quantum mechanical descriptions of stastical light beams”. Phys. Rev. Lett. 10, 277–279 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haus H. A., Yamamoto Y.: “Quantum noise of an injection-locked laser oscillator”. Phys. Rev. A, 29, 1261–1274 (1984)

    Article  Google Scholar 

  30. 30. Surgent, M., Scully, M. O. and Lamb, W. E., Laser Physics, Westview Press, Chapter 20, pp.331–335, 1978.

  31. Haug H.: “Quantum-mechanical rate equations for semiconductor lasers”. Phys. Rev. 184, 338–348 (1969)

    Article  Google Scholar 

  32. Yu, S. F., Analysis and Design of Vertical Cavity Surface Emitting Laser, Wiley-Interscience, Chapter 8, 2003.

  33. Yamamoto Y., Machida S., Neilsson O.: “Amplitude squeezing in a pumpnoise-suppressed laser oscillator”. Phys. Rev. A, 34, 4025–4042 (1986)

    Article  Google Scholar 

  34. Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures : Fundamentals and Applications, Academic Press, Boston, Chapter 3, pp.65–69, 1991.

  35. Takata, K., Utsunomiya, S. and Yamamoto, Y., “Transient time of an Ising machine based on injection-locked laser network,” New J. Phys., 14, 013052, 2012.

    Google Scholar 

  36. Wen, K., Takata, K., Utsunomiya, S. and Yamamoto, Y., “Self-learning injection-locked laser network for solving NP-complete problems,” in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Yamamoto.

About this article

Cite this article

Yamamoto, Y., Takata, K. & Utsunomiya, S. Quantum Computing vs. Coherent Computing. New Gener. Comput. 30, 327–356 (2012). https://doi.org/10.1007/s00354-012-0403-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-012-0403-5

Keywords

Navigation