Skip to main content
Log in

Development of a feedback model for the high-speed impinging planar jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This article experimentally investigates the self-excited impinging planar jet flow, specifically the development and propagation of large-scale coherent flow structures convecting between the nozzle lip and the downstream impingement surface. The investigation uses phase-locked particle image velocimetry measurements and a new structure-tracking scheme to measure convection velocity and characterize the impingement mechanism near the plate, in order to develop a new feedback model that can be used to predict the oscillation frequency as a function of flow velocity (\(U_o\)), impingement distance (\(x_o\)) and nozzle thickness (\(h\)). The resulting model prediction shows a good agreement with experimental tone frequency data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antonia R, Browne L, Rajagopalan S, Chambers A (1983) On the organized motion of a turbulent plane jet. J Fluid Mech 134:49–66

    Article  Google Scholar 

  • Arthurs D, Ziada S (2011) The planar jet-plate oscillator. J Fluids Struct 27:105–120

    Article  Google Scholar 

  • Arthurs D, Ziada S (2012a) Noise generation in the gas-wiping process. J Fluids Therm Sci 1:85–129

    Google Scholar 

  • Arthurs D, Ziada S (2012b) Self-excited oscillations of a high-speed impinging planar jet. J Fluids Struct 34:236–258

    Article  Google Scholar 

  • Arthurs D, Ziada S (2014) Effect of nozzle thickness on the self-excited impinging planar jet. J Fluids Struct 44:1–16

    Article  Google Scholar 

  • Billon A, Valeau V, Sakout A (2005) Two feedback paths for a jet-slot oscillator. J Fluids Struct 21:121–132

    Article  Google Scholar 

  • Camci C, Herr F (2002) Forced convection heat transfer enhancement using a self-oscillating impinging planar jet. ASME J Heat Transfer 124:770–782

    Article  Google Scholar 

  • Chung YM, Luo K (2002) Unsteady heat transfer analysis of an impinging jet. J Heat Transfer 124:1039–1048

    Article  Google Scholar 

  • Elavarasan R, Venkatakrishnan L, Krothapalli A, Lourenco L (2000) Unsteady heat transfer analysis of an impinging jet. J Vis 2:213–221

    Article  Google Scholar 

  • Ferrari J, Lior N, Slycke J (2002) An evaluation of gas quenching of steel rings by multiple-jet impingement. J Mater Process Technol 136:190–201

    Article  Google Scholar 

  • Fleury V, Bailly C, Jondeau E, Michard M, Juve D (2008) Space-time correlations in two subsonic jets using dual particle image velocimetry measurements. AIAA J 46:2498–2509

    Article  Google Scholar 

  • Glesser M, Valeau V, Sakout A (2008) Vortex sound in unconfined flows: application to the coupling of a jet-slot oscillator with a resonator. J Sound Vib 314:635–649

    Article  Google Scholar 

  • Gutmark E, Wolfshtein M (1978) The plane turbulent impinging jet. J Fluid Mech 88:737–756

    Article  Google Scholar 

  • Henderson TB, Bridges J, Wernet M (2005) An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J Fluid Mech 542:115–137

    Article  MATH  Google Scholar 

  • Hirahara H, Kawahashi M, Khan M, Hourigan K (2007) Experimental investigation of fluid dynamic instability in a transonic cavity flow. Exp Therm Fluid Sci 31(4):333–347

    Article  Google Scholar 

  • Ho C, Nosseir NS (1981) Dynamics of an impinging jet. Part 1. The feedback mechanism. J Fluid Mech 105:119–142

    Article  Google Scholar 

  • Hsiao F, Chou Y, Huang J (1999) The study of self-sustained oscillating plane jet flow impinging upon a small cylinder. Exp Fluids 27:392–399

    Article  Google Scholar 

  • Hsiao F, Hsu I (2004) Evolution of coherent structures and feedback mechanism of the plane jet impinging on a small cylinder. J Sound Vib 278:1163–1179

    Article  Google Scholar 

  • Hussain A (1986) Coherent structures and turbulence. J Fluid Mech 173:303–356

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MATH  MathSciNet  Google Scholar 

  • Kerhervé F, Fitzpatrick J, Jordan P (2006) The frequency dependence of jet turbulence for noise source modeling. J Sound Vib 296:209–225

    Article  Google Scholar 

  • Kerhervé F, Fitzpatrick J, Kennedy J (2010) Determination of two-dimensional space-time correlations in jet flows using simultaneous PIV and LDV measurements. Exp Therm Fluid Sci 34:788–797

    Article  Google Scholar 

  • Krothapalli A (1985) Discrete tones generated by an impinging underexpanded rectangular jet. AIAA J 23:1910–1915

    Article  Google Scholar 

  • Krothapalli A, Hsia Y, Baganoff D (1986) The role of screech tones in mixing of an underexpanded rectangular jet. J Sound Vib 106:119–143

    Article  Google Scholar 

  • Krothapalli A, Rajkuperan E, Alvi F (1999) Flow field and noise characteristics of a supersonic impinging jet. J Fluid Mech 392:155–181

    Article  MATH  Google Scholar 

  • Kwon Y-P (1998) Feedback mechanism of low-speed edge-tones. J Acoust Soc Am 104:2084–2089

    Article  Google Scholar 

  • La Cuadra P, Vergez C, Fabre B (2007) Visualization and analysis of jet oscillation under transverse acoustic perturbation. J Flow Vis Image Process 14:355–374

    Article  Google Scholar 

  • Lin J, Rockwell D (2001) Oscillations of a turbulent jet incident upon an edge. J Fluids Struct 15:791–829

    Article  Google Scholar 

  • Lucas M, Rockwell D (1987) Effect of nozzle asymmetry on jet-edge oscillations. J Sound Vib 116:355–374

    Article  Google Scholar 

  • Maurel S, Solliec C (2001) A turbulent plane jet impinging nearby and far from a flat plate. Exp Fluids 31:687–696

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  Google Scholar 

  • Narayanan V (2004) An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow. Int J Heat Mass Transf 47:1827–1845

    Article  Google Scholar 

  • Neuwerth G (1972) Acoustic feedback phenomena of the subsonic and hypersonic free jet impinging on a foreign body. NASA Tech Mem TT F 15:719

    Google Scholar 

  • Norum T (1991) Supersonic rectangular jet impingement noise experiments. AIAA J 14:489–497

    Google Scholar 

  • Nosseir NS, Ho C (1982) Dynamics of an impinging jet. Part 2. The noise generation. J Fluid Mech 116:379–391

    Article  Google Scholar 

  • O’Donovan T, Murray D (2007) Jet impingement heat transfer. Part II. A temporal investigation of heat transfer and local fluid velocities. Int J Heat Mass Transf 50:3302–3314

    Article  MATH  Google Scholar 

  • Panickar P, Raman R (2007) Criteria for the existence of helical instabilities in subsonic impinging jets. Phys Fluids 19:106103

    Article  Google Scholar 

  • Panickar P, Raman G (2009) Using linear stability analysis as a tool to evaluate jet and cavity flow control situations. Int J Flow Control 1(1):43–72

    Article  Google Scholar 

  • Powell A (1953) On the mechanism of choked jet noise. Proc Phys Soc B 66(12):1039–1057

    Article  Google Scholar 

  • Powell A (1961) On the edgetone. J Acoust Soc Am 33:395–409

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry. A practical guide, 2nd Ed. Springer, Berlin

    Google Scholar 

  • Raman G (1997) Cessation of screech in underexpanded jets. J Fluid Mech 336:69–90

    Article  Google Scholar 

  • Raman G (1999) Supersonic jet screech: half-century from Powell to the present. J Sound Vib 225:543–571

    Article  Google Scholar 

  • Rockwell D, Naudascher E (1979) Self-sustained oscillations of impinging free shear layers. Ann Rev Fluid Mech 11:67–94

    Article  Google Scholar 

  • Rockwell D, Lin JC, Oshkai P, Reiss M, Pollack M (2003) Shallow cavity flow tone experiments: onset of locked-on states. J Fluids Struct 17(3):381–414

    Article  Google Scholar 

  • Rossiter JE (1964) Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Royal aircraft establishment, TR No 64307

  • Scarano F, Riethmuller M (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:51–60

    Article  Google Scholar 

  • Schram C, Riethmuller M (2002) Measurement of vortex ring characteristics during pairing in a forced subsonic air jet. Exp Fluids 33(6):879–888

    Article  Google Scholar 

  • Schram C (2003) Aeroacoustics of subsonic jets: prediction of the sound produced by vortex pairing based on particle image velocimetry. Technical University of Eindhoven

  • Schram C, Hirschberg A (2003) Application of vortex sound theory to vortex-pairing noise: sensitivity to errors in flow data. J Sound Vib 266:1079–1098

    Article  Google Scholar 

  • Schram C, Rambaud P, Riethmuller ML (2004) Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry. Exp Fluids 36:233–245

    Article  Google Scholar 

  • Tam KW (1988) The shock-cell structures and screech tone frequencies of rectangular and non-axisymmetric supersonic jets. J Sound Vib 212:135–147

    Article  Google Scholar 

  • Tam KW, Ahuja K (1990) Theoretical model of discrete tone generation by impinging jets. J Fluid Mech 214:67–87

    Article  MathSciNet  Google Scholar 

  • Tam KW, Norum T (1992) Impingement tones of large aspect ratio supersonic rectangular jets. AIAA J 30:304–311

    Article  Google Scholar 

  • Thomas F, Chu H (1989) An experimental investigation of the transition of a planar jet- subharmonic suppression and upstream feedback. Phys Fluids Fluid Dyn 1:1566–1587

    Article  Google Scholar 

  • Thomas F, Goldschmidt V (1986) Structural characteristics of a developing turbulent planar jet. J Fluid Mech 163:227–256

    Article  Google Scholar 

  • Thomas F, Prakesh K (1986) An experimental investigation of the natural transition of an untuned planar jet. Phys Fluids A Fluid Dyn 3:90–105

    Article  Google Scholar 

  • Thurow BS (2008) On the convective velocity of large-scale structures in compressible axisymmetric jets. The Ohio State University, Columbus

    Google Scholar 

  • Thurow BS, Jiang N, Kim J-H, Lempert W, Samimy M (1987) Issues with measurements of the convective velocity of large-scale structures in the compressible shear layer of a free jet. Phys Fluids 20:066101

    Article  Google Scholar 

  • Umeda Y, Maeda H, Ishii R (1987) Discrete tones generated by the impingement of a high-speed jet on a circular cylinder. Phys Fluids 30:2380–2388

    Article  Google Scholar 

  • Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Therm Fluid Sci 6:111–134

    Article  Google Scholar 

  • Vollmers H (2001) Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data. Meas Sci Technol 12:1199–1207

    Article  Google Scholar 

  • Walker F (2001) Experiments characterizing nonlinear shear layer dynamics in a supersonic rectangular jet undergoing screech. Phys Fluids 326:2562–2579

    Google Scholar 

  • Wagner F (1971) The sound and flow field of an axially symmetric free jet upon impact on a wall. NASA Tech Mem TT F 13:942

    Google Scholar 

  • Ziada S (1982) Oscillations of an unstable mixing layer impinging upon an edge. J Fluid Mech 124:307–334

    Article  Google Scholar 

  • Ziada S (1995) Feedback control of globally unstable flows: impinging flows. J Fluids Struc 9:907–923

    Article  Google Scholar 

  • Ziada S (2001) Interaction of a jet-slot oscillator with a deep cavity resonator and its control. J Fluids Struc 15:831–843

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the support of NSERC Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Arthurs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthurs, D., Ziada, S. Development of a feedback model for the high-speed impinging planar jet. Exp Fluids 55, 1723 (2014). https://doi.org/10.1007/s00348-014-1723-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1723-7

Keywords

Navigation