Skip to main content
Log in

On the experimental investigation on primary atomization of liquid streams

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The production of a liquid spray can be summarized as the succession of the following three steps; the liquid flow ejection, the primary breakup mechanism and the secondary breakup mechanism. The intermediate step—the primary breakup mechanism—covers the early liquid flow deformation down to the production of the first isolated liquid fragments. This step is very important and requires to be fully understood since it constitutes the link between the flow issuing from the atomizer and the final spray. This paper reviews the experimental investigations dedicated to this early atomization step. Several situations are considered: cylindrical liquid jets, flat liquid sheets, air-assisted cylindrical liquid jets and air-assisted flat liquid sheets. Each fluid stream adopts several atomization regimes according to the operating conditions. These regimes as well as the significant parameters they depend on are listed. The main instability mechanisms, which control primary breakup processes, are rather well described. This review points out the internal geometrical nozzle characteristics and internal flow details that influence the atomization mechanisms. The contributions of these characteristics, which require further investigations to be fully identified and quantified, are believed to be the main reason of experimental discrepancies and explain a lack of universal primary breakup regime categorizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a :

liquid jet radius (mm)

A :

spray angle parameter

AL, AG:

fluid flow exit section area (mm2)

d :

nozzle diameter (mm)

D :

drop diameter (μm)

D 32 :

Sauter mean diameter (μm)

D 43 :

arithmetic mean diameter of the volume-based drop-size distribution (μm)

f :

undulation frequency (Hz)

g :

gravitational acceleration (m/s2)

k :

wave number (m−1)

K :

liquid sheet thickness parameter (cm2)

L :

nozzle length (mm)

L BU :

breakup length (mm)

L C :

liquid jet core length (mm)

L p :

boundary-layer length (mm)

L PC :

liquid jet potential core length (mm)

LPP:

liquid presence probability

m :

mass flux ratio

M :

momentum flux ratio

Oh :

Ohnesorge number

P amb :

gas ambient pressure (MPa)

r :

radial coordinate (mm)

r b :

radial position of a flat sheet breakup (mm)

Re :

Reynolds number

T :

Taylor number

t :

time (s)

t BU :

breakup time (s)

tL, tG:

liquid and gas flow thickness (mm)

U :

average velocity (m/s)

U LC :

critical liquid jet velocity (m/s)

U L0 :

minimum liquid jet velocity (m/s)

We :

Weber number

We Gc :

critical gaseous Weber number

We R :

relative gaseous Weber number

x :

axial distance from nozzle (mm)

δ :

air vorticity thickness (mm)

ΔP i :

injection pressure (MPa)

ρ :

fluid density (kg/m3)

λ :

wavelength (cm)

Λ:

radial spatial integral length of turbulence (μm)

μ :

fluid dynamic viscosity (kg/ms)

σ :

surface tension (N/m)

η :

interface displacement (mm)

η 0 :

initial interface displacement (μm)

ω :

pulsation (s−1)

L:

related to the liquid flow

G:

related to the gas flow

max:

maximum

opt:

optimum

References

  • Amagai K, Arai M (1997) Frequency analysis of disintegrating liquid column. In: Proceedings of ICLASS’97, Seoul, Korea, 18–22 August 1997, pp 361–368

  • Arai M, Amagai K (1999) Surface wave transition before breakup on a laminar liquid jet. Int J Heat Fluid Flow 20:507–512

    Google Scholar 

  • Arai T, Hashimoto H (1985) Disintegration of a thin liquid sheet in a cocurrent gas stream. In: Proceedings of ICLASS’85, London, UK, 8–10 July 1985, paper VIB/1

  • Arai M, Shimizu M, Hiroyasu H (1985) Break-up length and spray angle of high speed jet. In: Proceedings of ICLASS’85, London, UK, 8–10 July 1985, paper IB/4

  • Arai M, Shimizu M, Hiroyasu H (1988) Break-up length and spray formation mechanism of high speed liquid jet. In: Proceedings of ICLASS’88, Sendai, Japan, 22–24 August 1988, paper A/4, pp 177–184

  • Arcoumanis C, Gavaises M, Flora H, Roth H (2001) Visualisation of cavitation in diesel engine injectors. Mec Ind 2:375–381

    Google Scholar 

  • Bachalo WD (2000) Spray diagnostics for the twenty-first century. At Sprays 10:439–474

    Google Scholar 

  • Badock C, Wirth R, Tropea C (1999a) The influence of hydro grinding on cavitation inside a diesel injection nozzle and primary break-up under unsteady pressure conditions. In: Proceedings of ILASS-Europe’99, Toulouse, France, 5–7 July 1999

  • Badock C, Wirth R, Fath A, Leipertz A (1999b) Investigation of cavitation in real size diesel injection nozzles. Int J Heat Fluid Flow 20:518–544

    Google Scholar 

  • Bayvel L, Orzechowski Z (1993) Liquid atomization. Taylor and Francis, Washington, DC

    Google Scholar 

  • Blaisot JB, Adeline S (2000a) Determination of local properties of the instabilities on a capillary jet. In: Proceedings of ICLASS’2000, Pasadena, CA, USA, 16–20 July 2000

  • Blaisot JB, Adeline S (2000b) Determination of the growth rate of instability of low velocity free falling jets. Exp Fluids 29:247–256

    Google Scholar 

  • Blaisot JB, Adeline S (2003) Instabilities on a free falling jet under an internal flow breakup mode regime. Int J Multiph Flow 29:629–653

    MATH  Google Scholar 

  • Blaisot JB, Yon J (2005) Droplet size and morphology characterization for dense sprays by image processing: application to diesel spray. Exp Fluids 39:977–994

    Google Scholar 

  • Briggs TE, Malave A, Farrell PV (2006) Dual-wavelength absorption imaging of diesel sprays. In: Proceedings of ICLASS 2006, Kyoto, Japan, 27 August–1 September 2006, paper 135

  • Carvalho IS, Heitor MV (1998) Liquid film break-up in a model of a prefilming airblast nozzle. Exp Fluids 24:408–415

    Google Scholar 

  • Carvalho IS, Heitor MV, Santos D (2002) Liquid film disintegration regimes and proposed correlations. Int J Multiph Flow 28:773–789

    MATH  Google Scholar 

  • Chigier N (2005) The future of atomization and sprays. In: Proceedings of ILASS-Europe 2005, Orléans, France, 5–7 September 2005

  • Chigier N, Dumouchel C (1996) Atomization of liquid sheets. In: Kuo KK (ed) Recent advances in spray combustion: spray atomization and drop burning phenomena. Progress in astronautics and aeronautics, vol I, 166, chap 10. American Institute of Aeronautics and Astronautics, pp 241–259

  • Chigier N, Reitz RD (1996) Regimes of jet breakup and breakup mechanisms (physical aspects). In: Kuo KK (ed) Recent advances in spray combustion: spray atomization and drop burning phenomena. Progress in Astronautics and Aeronautics, vol I, chap 4, 166. American Institute of Aeronautics and Astronautics, pp 109–135

  • Clanet C, Villermaux E (2002) Life of a smooth liquid sheet. JFM 462:307–340

    MATH  MathSciNet  Google Scholar 

  • Clark CJ, Dombrowski N (1974) An experimental study of the flow of thin liquid sheets in hot atmospheres. JFM 64:167–175

    Google Scholar 

  • Crapper GD, Dombrowski N, Jepson WP, Pyott GAD (1973) A note of the growth of Kelvin–Helmholtz waves on thin liquid sheets. JFM 57:671–672

    Google Scholar 

  • Dahm WJA, Frieler CE, Tryggvason G (1992) Vortex structure and dynamics in the near field of a coaxial jet. JFM 241:371–402

    Google Scholar 

  • Dan T, Yamamoto T, Senda J, Fujimoto H (1997) Effect of nozzle configurations for characteristics of non-reacting diesel fuel sprays. SAE technical paper 970355

  • Delacourt E, Desmet B, Besson B (2005) Characterisation of very high pressure diesel sprays using digital imaging techniques. Fuel 84:859–867

    Google Scholar 

  • Dombrowski N, Foumeny EA (1998) On the stability of liquid sheets in hot atmospheres. At Sprays 8:235–240

    Google Scholar 

  • Dombrowski N, Hasson D, Ward DE (1960) Some aspects of liquid flow through fan spray nozzles. Chem Eng Sci 12:35–50

    Google Scholar 

  • Dumont N, Simonin O, Habchi C (2000) Cavitating flow in diesel injectors and atomization: a bibliographical review. In: Proceedings of ICLASS 2000, Pasadena, CA, USA, 16–20 July 2000

  • Dumouchel C (2001) Measurements of breakup length of cylindrical liquid jets. Application to low-pressure car injector. At Sprays 11:201–226

    Google Scholar 

  • Dumouchel C (2005) Experimental analysis of a liquid atomization process at low Weber number. In: Proceedings of international symposium on heat and mass transfer in spray systems, Antalya, Turkey, 5–10 June 2005

  • Dumouchel C, Cousin J, Triballier K (2005a) On the role of the liquid flow characteristics on low-Weber-number atomization processes. Exp Fluids 38:637–647

    Google Scholar 

  • Dumouchel C, Cousin J, Triballier K (2005b) Experimental analysis of liquid–gas interface at low Weber number: interface length and fractal dimension. Exp Fluids 39:651–666

    Google Scholar 

  • Dunand A, Carreau JL, Roger F (2005) Liquid jet breakup and atomization by annular swirling gas jet. At Sprays 15:223–247

    Google Scholar 

  • Eroglu H, Chigier N (1991a) Liquid jet instability in coaxial air flow. In: Proceedings of ICLASS’91, Gaithersburg, MD, USA, 15–18 July 1991, paper 78, pp 703–710

  • Eroglu H, Chigier N (1991b) Wave characteristics of liquid jets from airblast coaxial atomizers. At Sprays 1:349–366

    Google Scholar 

  • Eroglu H, Chigier N (1991c) Liquid sheet instability in a coflowing airstream. In: Proceedings of ICLASS’91, Gaithersburg, MD, USA, 15–18 July 1991, paper 75, pp 679–686

  • Eroglu H, Chigier N, Farago Z (1991) Caoaxial atomizer liquid intact lengths. Phys Fluids 3:303–308

    Google Scholar 

  • Faeth GM, Hsiang LP, Wu PK (1995) Structure and breakup properties of sprays. Int J Multiph Flow 21:99–127

    MATH  Google Scholar 

  • Farago Z, Chigier N (1990) Parametric experiments on coaxial airblast jet atomization. In: ASME 35th international gas turbine conference, Brussels, Belgium, June 1990, paper 90-GT-81

  • Farago Z, Chigier N (1992) Morphological classification of disintegration of round liquid jets in a coaxial air stream. At Sprays 2:137–153

    Google Scholar 

  • Fenn RW, Middleman S (1969) Newtonian jet stability: the role of air resistance. AIChE J 15:379–383

    Google Scholar 

  • Fraser RP, Eisenklam P, Dombrowski N, Hasson D (1962) Drop formation from rapidly moving liquid sheets. AIChE J 8:672–680

    Google Scholar 

  • Frohn A, Roth N (2000) Dynamics of droplets. Springer, Heidelberg

  • Funada T, Joseph DD, Yamashita S (2004) Stability of a liquid jet into incompressible gases and liquids. Int J Multiph Flow 30:1279–1310

    MATH  Google Scholar 

  • Godelle J (1999) Caractérisation de systèmes dynamiques complexes: instabilités de jet. Ph.D. thesis, University of Paris VII, France

  • Godelle J, Letellier C, Dumouchel C (2000a) Velocity profile effect and phase intermittency in low velocity cylindrical liquid jets. In: Proceedings of ICLASS’2000, Pasadena, CA, USA, 16–20 July 2000

  • Godelle J, Letellier C, Dumouchel C (2000b) Phase intermittency versus stochastic dynamics in low velocity cylindrical liquid jets. In: Proceedings of ILASS-Europe 2000, Darmstadt, Germany, 11–13 September 2000

  • Godelle J, Letellier C (2000) Symbolic statistical analysis for free liquid jets. Phys Rev E 62:7973–7981

    Google Scholar 

  • Grant RP, Middleman S (1966) Newtonian jet stability. AIChE J 12:669–678

    Google Scholar 

  • Grout S, Dumouchel C, Cousin J, Nugglish H (2007) Fractal analysis of atomizing liquid flows. Int J Multiph Flow 33:1023–1044

    Google Scholar 

  • Hagerty WW, Shea JF (1955) A study of the stability of plane fluid sheets. J Appl Mech 22:509–514

    Google Scholar 

  • Hardalupas Y, Tsai RF, Whitelaw JH (1998) Primary breakup of coaxial airblast atomizers. In: Proceedings of ILASS-Europe’98, Manchester, UK, 6–8 July 1998, pp 42–47

  • Hiroyasu H (2000) Spray breakup mechanism from the hole-type nozzle and its applications. At Sprays 10:511–527

    Google Scholar 

  • Hiroyasu H, Arai M, Shimizu M (1991) Break-up length of a liquid jet and internal flow in a nozzle. In: Proceedings of ICLASS’91, Gaithersburgh, MD, USA, 15–18 July 1991, paper 26, pp 275–282

  • Huang JCP (1970) The break-up of axisymmetric liquid sheets. JFM 43:305–319

    Google Scholar 

  • Ibrahim EA, Marshall SO (2000) Instability of a liquid jet of parabolic velocity profile. Chem Eng J 76:17–21

    Google Scholar 

  • Karasawa T, Tanaka M, Abe K, Shiga S, Kurabayashi T (1992) Effect of nozzle configuration on the atomization of a steady spray. At Sprays 2:411–426

    Google Scholar 

  • Keller JB, Rubinow SI, Tu YO (1973) Spatial instability of a jet. Phys Fluids 16:2052–2055

    Google Scholar 

  • Kitamura Y, Takahashi T (1978) Influence of the nozzle length on breakup of a liquid jet. In: Proceedings of ICLASS 78, paper 1.1, pp 1–7

  • Kim JK, Nishida K, Hiroyasu H (1997) Characteristics of the internal flow in a diesel injection nozzle. In: Proceedings of ICLASS’97, Seoul, Korea, 18–22 August 1997, pp 175–182

  • Lasheras JC, Hopfinger EJ (2000) Liquid jet instability and atomization in a coaxial gas stream. Annu Rev Fluid Mech 32:275–308

    Google Scholar 

  • Lasheras JC, Villermaux E, Hopfinger EJ (1998) Break-up and atomization of a round water jet by a high-speed annular air jet. JFM 357:351–379

    Google Scholar 

  • Lefebvre AH (1989) Atomization and sprays. Hemisphere Publishing Corporation, New York

  • Lefebvre AH (1992) Energy considerations in twin-fluid atomization. ASME J Eng Gas Turbine Power 114:207–212

    Google Scholar 

  • Leib SJ, Goldstein ME (1986a) Convective and absolute instability of a viscous liquid jet. Phys Fluids 29:952–954

    Google Scholar 

  • Leib SJ, Goldstein ME (1986b) The generation of capillary instability on a liquid jet. JFM 168:479–500

    MATH  Google Scholar 

  • Leroux B, Delabroy O, Lacas F (2007) Experimental study of coaxial atomizers scaling. Part I: Dense core zone. At Sprays 17:381–407

    Google Scholar 

  • Leroux S (1996) Stabilité d’un jet liquide cylindrique. Influence de fortes pressions ambiantes. Ph.D. thesis, Université of Rouen, France

  • Leroux S, Dumouchel C, Ledoux M (1996) The stability curve of Newtonian liquid jets. At Sprays 6:623–647

    Google Scholar 

  • Leroux S, Dumouchel C, Ledoux M (1997) The breakup length of laminar cylindrical liquid jets. Modification of Weber’s theory. In: Proceedings of ICLASS’97, Seoul, Korea, 18–22 August 1997, pp 353–360

  • Li H, Collicott SH (2006) Visualisation of cavitation in high-pressure diesel fuel injector orifices. At Sprays 16:875–886

    Google Scholar 

  • Lin SP (2003) Breakup of liquid sheets and jets. Cambridge University Press, London

  • Lin SP, Creighton B (1990) Energy budget in atomization. J Aero Sci Technol 12:630–636

    Google Scholar 

  • Lin SP, Lian ZW (1989) Absolute instability in a gas. Phys Fluids A1:490–493

    Google Scholar 

  • Lin SP, Lian ZW (1990) Mechanics of the breakup of liquid jets. AIAA J 28:120–126

    Google Scholar 

  • Lin SP, Reitz RD (1998) Drop and spray formation from a liquid jet. Annu Rev Fluid Mech 30:85–105

    MathSciNet  Google Scholar 

  • Lozano A, Barreras F (2001) Experimental study of the gas flow in an air-blasted liquid sheet. Exp Fluids 31:367–376

    Google Scholar 

  • Lozano A, Call CJ, Dopazo C, Gacia-Olivares A (1996) Experimental and numerical study of the atomization of a planar liquid sheet. At Sprays 6:77–94

    Google Scholar 

  • Lozano A, Gacia-Olivares A, Dopazo C (1998) The instability growth leading to a liquid sheet breakup. Phys Fluids 10:2188–2197

    MATH  MathSciNet  Google Scholar 

  • Lozano A, Barreras F, Hauke G, Dopazo C (2001) Longitudinal instabilities in an air-blasted liquid sheet. JFM 437:143–173

    MATH  Google Scholar 

  • Lozano A, Barreras F, Siegler C, Löw D (2005) The effects of sheet thickness on the oscillation of an air-blasted liquid sheet. Exp Fluids 39:127–139

    Google Scholar 

  • Malot H, Blaisot JB, Dumouchel C (2000) Droplet size distribution of sprays produced by Newtonian liquid jets. In: Proceedings of ICLASS’2000, Pasadena, CA, USA, 16–20 July 2000

  • Malot H, Dumouchel C (2001) Experimental investigation of the drop size distribution of sprays produced by a low-velocity Newtonian cylindrical liquid jet. At Sprays 11:227–254

    Google Scholar 

  • Mansour A, Chigier N (1990) Disintegration of liquid sheets. Phys Fluids 2:706–719

    Google Scholar 

  • Mansour A, Chigier N (1991) Dynamic behavior of liquid sheets. Phys Fluids 3:2971–2980

    Google Scholar 

  • Mansour A, Chigier N (1994) Effect of turbulence on the stability of liquid jets and the resulting droplet size distributions. At Sprays 4:583–604

    Google Scholar 

  • Marmottant PH, Villermaux E (2004) On spray formation. JFM 498:73–111

    MATH  Google Scholar 

  • Mayer WOH, Branam R (2004) Atomization characteristics on the surface of a round liquid jet. Exp Fluids 36:528–539

    Google Scholar 

  • Mc Carthy MJ, Molloy NA (1974) Review of stability of liquid jets and the influence of nozzle design. Chem Eng J 7:1–20

    Google Scholar 

  • Miesse CC (1955) Correlation of experimental data on the disintegration of liquid jets. Ind Eng Chem 47:1690–1695

    Google Scholar 

  • Nakagawa H, Kamata S, Hori T, Okumura N, Senda J, Fujimoto HG (2006) Novel photographic imaging method for diesel spray structure with new lens and large sized film system. In: Proceedings of ICLASS 2006, Kyoto, Japan, 27 August–1 September 2006, paper 119

  • Ohrn TR, Senser DW, Lefebvre AH (1991a) Geometrical effects on discharge coefficients for plain-orifice atomizers. At Sprays 1:137–153

    Google Scholar 

  • Ohrn TR, Senser DW, Lefebvre AH (1991b) Geometrical effects on spray angle for plain-orifice atomizers. At Sprays 1:253–268

    Google Scholar 

  • Paciaroni M, Linne M, Hall T, Delplanque JP, Praker T (2004) Ballistic imaging for the liquid core of an atomizing spray. In: Proceedings of ILASS-Europe 2004, Nottingham, UK, 6–8 September 2004, pp 94–99

  • Paciaroni M, Linne M, Hall T, Delplanque JP, Praker T (2006) Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray. At Sprays 16:51–69

    Google Scholar 

  • Park J, Huh KY, Li X, Renksizbulut M (2004) Experimental investigation on cellular breakup of a planar liquid sheet from an air-blast nozzle. Phys Fluids 16:625–632

    Google Scholar 

  • Parker TE, Raimaldi LR, Rawlins WT (1998) A comparative study of room-temperature and combustion fuel sprays near the injector tip using infrared laser diagnostics. At Sprays 8:565–600

    Google Scholar 

  • Payri F, Bermudez V, Payri R, Salvador FJ (2004) The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel 83:419–431

    Google Scholar 

  • Phinney RE (1972) Stability of a laminar viscous jet. The influence of the initial disturbance level. AIChE J 18:432–434

    Google Scholar 

  • Porcheron E, Carreau JL, Prevost L, Le Visage D, Roger F (2002) Effect of injection gas density on coaxial liquid jet atomization. At Sprays 12:209–227

    Google Scholar 

  • Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 10:4–13

    Google Scholar 

  • Ranz WE (1956) On sprays and spraying. Dep. Eng. Res., Penn State Univ. Bull 65

  • Rehab H, Villermaux E, Hopfinger EJ (1997) Flow regimes of large-velocity-ratio coaxial jets. JFM 345:357–381

    MathSciNet  Google Scholar 

  • Reitz R (1978) Atomization and other breakup regimes of a liquid Jet. Ph.D. thesis, Princeton University, Princeton

  • Reitz R, Bracco FV (1982) Mechanism of atomization of a liquid jet. Phys Fluids 25:1730–1742

    MATH  Google Scholar 

  • Rizk NK, Lefebvre AH (1980) Influence of liquid film thickness on airblast atomization. Trans ASME J Eng Power 102:706–710

    Google Scholar 

  • Ruiz F (2002) Small waves on the jet “intact length”: results using a new experimental technique. At Sprays 12:709–720

    Google Scholar 

  • Sallam KA, Dai Z, Faeth GM (1999) Drop formation at the surface of plane turbulent liquid jets in still gases. Int J Multiph Flow 25:1161–1180

    MATH  Google Scholar 

  • Sallam KA, Dai Z, Faeth GM (2002) Liquid breakup at the surface of turbulent round liquid jets in still gases. Int J Multiph Flow 28:427–449

    MATH  Google Scholar 

  • Savart F (1833) Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi. Ann Chem 53:337–386

    Google Scholar 

  • Shavit U (2001) Gas–liquid interaction in the liquid breakup region of two-fluid atomization. Exp Fluids 31:550–557

    Google Scholar 

  • Shavit U, Chigier N (1995) Fractal dimensions of liquid jet interface under breakup. At Sprays 5:525–543

    Google Scholar 

  • Sindayihebura D, Dumouchel C (2001) Pressure atomizer: hole break-up of the sheet. J Vis 4:5

    Article  Google Scholar 

  • Sirignano WA, Mehring C (2000) Review of theory of distortion and disintegration of liquid streams. Prog Energy Combust Sci 26:609–655

    Google Scholar 

  • Smallwood GJ, Gülder OL (2000) Views on the structure of transient diesel sprays. At Sprays 10:355–386

    Google Scholar 

  • Sowa WA (1992) Interpreting mean drop diameters using distribution moments. At Sprays 2:1–15

    Google Scholar 

  • Stapper BE, Samuelsen GS (1990) An experimental study of the breakup of a two-dimensional liquid sheet in the presence of co-flow air shear. AIAA Paper 90-22730

  • Stapper BE, Sowa WA, Samuelsen GS (1992) An experimental study of the effects of liquid properties on the breakup of two-dimensional liquid sheet. Trans ASME Eng Gas Turbine Power 114:39–45

    Google Scholar 

  • Stepowski D, Werquin O (2004) Measurement of the liquid volume fraction and its statistical distribution in the near development field of a spray. At Sprays 14:243–264

    Google Scholar 

  • Sterling AM, Sleicher CA (1975) The instability of capillary jets. JFM 68:477–495

    MATH  Google Scholar 

  • Squire HB (1953) Investigation on the instability of a moving liquid film. Br J Appl Phys 4:167–169

    Google Scholar 

  • Tamaki N, Shimizu M, Hiroyasu H (2001) Enhancement of the atomization of a liquid jet by cavitation in a nozzle hole. At Sprays 11:125–137

    Google Scholar 

  • Tamaki N, Shimizu M, Nishida K, Hiroyasu H (1998) Effects of cavitation and internal flow on atomization of a liquid jet. At Sprays 8:179–197

    Google Scholar 

  • Taylor GI (1940) Generation of ripples by wind blowing over a viscous fluid. Collected work of G.I. Taylor, vol 3

  • Taylor GI (1959a) The dynamics of thin sheets of fluids. I—Water bells. Proc R Soc Lond A 253:289–295

    Article  Google Scholar 

  • Taylor GI (1959b) The dynamics of thin sheets of fluids. II—Waves in fluid sheets. Proc R Soc Lond A 253:296–312

    Google Scholar 

  • Taylor GI (1959c) The dynamics of thin sheets of fluids. III—Disintegration of fluid sheets. Proc R Soc Lond A 253:313–321

    Google Scholar 

  • Tropea C, Yarin AL, Foss JF (2007) Springer handbook of experimental fluid mechanics. Springer, Heidelberg

  • Vich G, Dumouchel C, Ledoux M (1996) Mechanisms of disintegration of flat liquid sheets. In: Proceedings of ILASS-Europe’96, Lund, Sweden, 19–21 June 1996, pp 121–126

  • Villermaux E, Clanet C (2002) Life of a flapping liquid sheet. JFM 462:341–363

    MATH  MathSciNet  Google Scholar 

  • Weber C (1931) Zum Zerfall eines Flussigkeitstrahles. Z Angew Math Mech 11:136–159

    MATH  Google Scholar 

  • Woodward RD, Burch RL, Kuo KK, Cheung FB (1994) Correlation of intact-liquid core length for coaxial injectors. In: Proceedings of ICLASS’94, Rouen, France, 18–22 July 1994, paper VI-11, pp 105–112

  • Wu PK, Faeth GM (1993) Aerodynamic effects on primary breakup of turbulent liquids. At Sprays 3:265–289

    Google Scholar 

  • Wu PK, Faeth GM (1995) Onset and end of drop formation along the surface of turbulent liquid jets in still gases. Phys Fluids 7:2915–2917

    Google Scholar 

  • Wu PK, Miranda RF, Faeth GM (1995) Effects of initial flow conditions on primary breakup of nonturbulent and turbulent round liquid jets. At Sprays 5:175–196

    Google Scholar 

  • Wu PK, Tseng LK, Faeth GM (1992) Primary breakup in gas/liquid mixing layers for turbulent liquids. At Sprays 2:295–317

    Google Scholar 

  • Yon J, Blaisot JB, Ledoux M (2003) Unusual laser-sheet tomography coupled with backlight imaging configurations to study the diesel jet structure at the nozzle outlet for high injection pressures. J Flow Vis Image Process 9:1–20

    Google Scholar 

  • Yon J, Lalizel G, Blaisot JB (2004) A statistical morphological determination of the growth rate of the interfacial disturbance of an excited Rayleigh jet. J Flow Vis Image Process 11:1–17

    Google Scholar 

  • Yue Y, Powell CF, Poola R, Wang J, Schaller JK (2001) Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption. At Sprays 2001:471–490

    Google Scholar 

  • Yule AJ, Vamvakoglou K, Shrimpton JS (1998) Break-up of a thin flat sheet adjacent to a wide high velocity air stream. In: Proceedings of ILASS-Europe’98, Manchester, UK, 6–8 July 1998, pp 18–23

  • Zhao FQ, Lai MC (1995) The spray characteristics of automotive port fuel injection. A critical review. SAE technical paper ser. 950506

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Dumouchel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumouchel, C. On the experimental investigation on primary atomization of liquid streams. Exp Fluids 45, 371–422 (2008). https://doi.org/10.1007/s00348-008-0526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0526-0

Keywords

Navigation