Skip to main content

Advertisement

Log in

Diagnostic accuracy of C-11 choline and C-11 acetate for lymph node staging in patients with bladder cancer: a systematic review and meta-analysis

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Objective

We aimed to assess the diagnostic accuracy of C-11 choline and C-11 acetate positron emission tomography/computed tomography (PET/CT) for lymph node (LN) staging in bladder cancer (BC) patients through a systematic review and meta-analysis.

Methods

The MEDLINE, EMBASE, and Cochrane Library database, from the earliest available date of indexing through June 30, 2017, were searched for studies evaluating the diagnostic performance of C-11 choline and C-11 acetate PET/CT for LN staging in BC. We determined the sensitivities and specificities across studies, calculated positive and negative likelihood ratios (LR+ and LR−), and constructed summary receiver operating characteristic curves.

Results

Across 10 studies (282 patients), the pooled sensitivity was 0.66 (95% CI 0.54–0.75) without heterogeneity (χ2 = 12.4, p = 0.19) and a pooled specificity of 0.89 (95% CI 0.76–0.95) with heterogeneity (χ2 = 29.1, p = 0.00). Likelihood ratio (LR) syntheses gave an overall positive likelihood ratio (LR+) of 5.8 (95% CI 2.7–12.7) and negative likelihood ratio (LR−) of 0.39 (95% CI 0.28–0.53). The pooled diagnostic odds ratio (DOR) was 15 (95% CI 6–38). In meta-regression analysis, the study design (prospective vs retrospective) was the source of the study heterogeneity.

Conclusion

C-11 choline and C-11 acetate PET/CT shows a low sensitivity and moderate specificity for the detection of metastatic LNs in patients with BC. Moreover, heterogeneity among the studies should be considered a limitation. Further large multicenter studies would be necessary to substantiate the diagnostic accuracy of C-11 choline and C-11 acetate PET/CT for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL et al (2017) Cancer Statistics, 2017. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  2. Amin MB et al (2013) ICUD-EAU international consultation on bladder cancer 2012: pathology. Eur Urol 63(1):16–35

    Article  PubMed  Google Scholar 

  3. Paik ML et al (2000) Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol 163(6):1693–1696

    Article  CAS  PubMed  Google Scholar 

  4. Herr HW et al (2007) Defining optimal therapy for muscle invasive bladder cancer. J Urol 177(2):437–443

    Article  CAS  PubMed  Google Scholar 

  5. Stein JP et al (2001) Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 19(3):666–675

    Article  CAS  PubMed  Google Scholar 

  6. Nishiyama H et al (2004) Clinical outcome of a large-scale multi-institutional retrospective study for locally advanced bladder cancer: a survey including 1131 patients treated during 1990–2000 in Japan. Eur Urol 45(2):176–181

    Article  PubMed  Google Scholar 

  7. Palmieri F et al (2010) Prognostic value of lymphovascular invasion in bladder cancer in patients treated with radical cystectomy. Anticancer Res 30(7):3–6

    Google Scholar 

  8. Zehnder P et al (2011) Super extended versus extended pelvic lymph node dissection in patients undergoing radical cystectomy for bladder cancer: a comparative study. J Urol 186(4):1261–1268

    Article  PubMed  Google Scholar 

  9. Schiavina R et al (2013) Perioperative complications and mortality after radical cystectomy when using a standardized reporting methodology. Clin Genitourin Cancer 11(2):189–197

    Article  PubMed  Google Scholar 

  10. Husband JE (1995) Computer tomography and magnetic resonance imaging in the evaluation of bladder cancer. J Belge Radiol 78(6):350–355

    CAS  PubMed  Google Scholar 

  11. Blodgett TM et al (2007) PET/CT: form and function. Radiology 242(2):360–385

    Article  PubMed  Google Scholar 

  12. Czernin J et al (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48(Suppl 1):78S–88S

    CAS  PubMed  Google Scholar 

  13. Kibel AS et al (2009) Prospective study of [18F] fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol 27(26):4314–4320

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lodde M et al (2010) Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int 106(5):658–663

    Article  PubMed  Google Scholar 

  15. Swinnen G et al (2010) FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol 57(4):641–647

    Article  PubMed  Google Scholar 

  16. Vind-Kezunovic S et al (2017) Detection of lymph node metastasis in patients with bladder cancer using maximum standardised uptake value and 18F-fluorodeoxyglucose positron emission tomography/computed tomography: results from a high-volume centre including long-term follow-up. Eur Urol Focus. https://doi.org/10.1016/j.euf.2017.06.005 (Epub ahead of print)

    PubMed  Google Scholar 

  17. Golan S et al (2011) Comparison of 11C-choline with 18F-FDG in positron emission tomography/computerized tomography for staging urothelial carcinoma: a prospective study. J Urol 186(2):436–441

    Article  PubMed  Google Scholar 

  18. Vargas HA et al (2012) Prospective evaluation of MRI, 11C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radiol 81(12):4131–4137

    Article  CAS  PubMed  Google Scholar 

  19. Whiting PF et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

    Article  PubMed  Google Scholar 

  20. Glas AS et al (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56(11):1129–1135

    Article  PubMed  Google Scholar 

  21. Thompson SG (1994) Why sources of heterogeneity in meta-analysis should be investigated. BMJ 309(6965):1351–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deeks JJ et al (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58(9):882–893

    Article  PubMed  Google Scholar 

  23. Reitsma JB et al (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58(10):982–990

    Article  PubMed  Google Scholar 

  24. Hamza TH et al (2008) The binomial distribution of meta-analysis was preferred to model within-study variability. J Clin Epidemiol 61(1):41–51

    Article  PubMed  Google Scholar 

  25. Rutter CM et al (2001) A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 20(19):2865–2884

    Article  CAS  PubMed  Google Scholar 

  26. Lijmer JG et al (1999) Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 282(11):1061–1066

    Article  CAS  PubMed  Google Scholar 

  27. Brunocilla E et al (2014) Diagnostic accuracy of 11C-choline PET/CT in preoperative lymph node staging of bladder cancer: a systematic comparison with contrast-enhanced CT and histologic findings. Clin Nucl Med 39(5):e308–e312

    Article  PubMed  Google Scholar 

  28. Ceci F et al (2015) 11C-choline PET/CT and bladder cancer: lymph node metastasis assessment with pathological specimens as reference standard. Clin Nucl Med 40(2):e124–e128

    Article  PubMed  Google Scholar 

  29. Gofrit ON et al (2006) Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol 176(3):940–944

    Article  PubMed  Google Scholar 

  30. de Jong IJ et al (2002) Visualisation of bladder cancer using 11C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging 29(10):1283–1288

    Article  PubMed  Google Scholar 

  31. Graziani T et al (2015) 11C-choline PET/CT for restaging of bladder cancer. Clin Nucl Med 40(1):e1–e5

    Article  PubMed  Google Scholar 

  32. Maurer T et al (2012) Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol 61(5):1031–1038

    Article  PubMed  Google Scholar 

  33. Picchio M et al (2006) Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med 47(6):938–944

    CAS  PubMed  Google Scholar 

  34. Schöder H et al (2012) Initial results with 11C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol 14(2):245–251

    Article  PubMed  Google Scholar 

  35. Treiber U et al (2005) Diagnostic efficacy of 11C-choline positron emission tomography in patients scheduled for cystectomy. Eur Urol Suppl 4(3):161

    Article  Google Scholar 

  36. Brunocilla E et al (2011) The role of pelvic lymph node dissection during radical cystectomy for bladder cancer. Anticancer Res 31(1):271–275

    PubMed  Google Scholar 

  37. Shvarts O et al (2002) Positron emission tomography in urologic oncology. Cancer Control 9(4):335–342

    Article  PubMed  Google Scholar 

  38. Farsad M et al (2008) Positron-emission tomography in imaging and staging prostate cancer. Cancer Biomark 4(4–5):277–284

    Article  CAS  PubMed  Google Scholar 

  39. Nanni C et al (2013) Comparison of 18F-FACBC and 11C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl Med Mol Imaging 40(Suppl 1):S11–S17

    Article  PubMed  Google Scholar 

  40. Lu YY et al (2012) Clinical value of FDG PET or PET/CT in urinary bladder cancer: a systemic review and meta-analysis. Eur J Radiol 81(9):2411–2416

    Article  PubMed  Google Scholar 

  41. Kates AM et al (2003) Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol 41(2):293–299

    Article  CAS  PubMed  Google Scholar 

  42. Oyama N et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555

    CAS  PubMed  Google Scholar 

  43. Sandblom G et al (2006) Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 67(5):996–1000

    Article  PubMed  Google Scholar 

  44. Yoshimoto M et al (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28(2):117–122

    Article  CAS  PubMed  Google Scholar 

  45. Vavere AL et al (2008) 11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49(2):327–334

    Article  CAS  PubMed  Google Scholar 

  46. Menendez JA et al (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Article  CAS  PubMed  Google Scholar 

  47. Brusselmans K et al (2005) RNA interference-mediated silencing of the acetyl-CoA-carboxylase alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res 65(15):6719–6725

    Article  CAS  PubMed  Google Scholar 

  48. Boellaard R (2012) Mutatis mutandis: harmonize the standard! J Nucl Med 53(1):1–3

    Article  CAS  PubMed  Google Scholar 

  49. Boellaard R et al (2008) The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 35(12):2320–2333

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Protocol/project development: KSJ. Data collection or management: KSJ and PJK. Data analysis: KSJ and PJK. Manuscript writing/editing; KSJ and PJK.

Corresponding author

Correspondence to Seong-Jang Kim.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Ethical approval

Institutional review board approval was not required because we only performed data analysis based on the published studies.

Informed consent

Written informed consent was not required for this study because it is a meta-analysis based on the studies that have been published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Koo, P.J., Pak, K. et al. Diagnostic accuracy of C-11 choline and C-11 acetate for lymph node staging in patients with bladder cancer: a systematic review and meta-analysis. World J Urol 36, 331–340 (2018). https://doi.org/10.1007/s00345-017-2168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-017-2168-4

Keywords

Navigation