Skip to main content

Advertisement

Log in

Akt signalling parameters are different in oncocytomas compared to renal cell carcinoma

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Renal oncocytomas are assigned as benign tumours, and their detailed molecular mechanism is poorly characterised. Activation of the PKB/Akt pathway is assumed to contribute to the pathogenesis and progression of malignant disease. For oncocytomas, hardly any data are available for Akt signalling parameters. Aim of the present work was to determine the alterations of Akt parameters PTEN, phosphorylated Akt (p-Akt) and p27Kip1 in oncocytoma to better understand the dedifferentiation of renal tumours.

Methods

By tissue microarray analysis 15 oncocytoma, 18 clear cell renal cell carcinoma (ccRCC) and the corresponding benign tissue were investigated. Significant expression differences between PTEN, p-Akt and p27Kip1 were determined by immunohistochemistry using One-way ANOVA with all pairs Tukey–Kramer as post hoc analyses. To investigate Akt parameter interactions in the oncocytoma, linear regression analyses were performed.

Results

Expression of all proteins was significantly different between the groups and in all groups the lowest for oncocytoma: PTEN: 32.9 ± 13.0 versus 75.5 ± 8.0 versus 123.7 ± 8.8; p < 0.001 for oncocytoma, benign parenchyma and ccRCC and 2.7 ± 1.2 versus 40.8 ± 9.5 versus 143.6 ± 12.2; p < 0.001 for p27Kip1. p-Akt expression was significantly different between oncocytoma and ccRCC (67.3 ± 15.7 vs. 144.0 ± 26.6; p < 0.05).

Conclusion

All three investigated parameters were the lowest in oncocytoma when compared to ccRCC. Expression of PTEN and p27Kip1 seems to be exceedingly associated with malignant conditions of ccRCC. These findings might contribute to the understanding of tumorous signalling of the PKB/Akt axis in renal tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Romis L et al (2004) Frequency, clinical presentation and evolution of renal oncocytomas: multicentric experience from a European database. Eur Urol 45:53–57 (discussion 57)

    Article  PubMed  Google Scholar 

  2. Eble JN (2004) Tumors at the kidney, chap 1. In: Eble JN, Sauter G, Epstein JI (eds) Pathology and genetics of tumours of the urinary system and male genital organs. World Health Organisation classification of tumours. IARC Press, Lyons, pp 9–88

  3. Van der Kwast T, Perez-Ordonez B (2007) Renal oncocytoma, yet another tumour that does not fit in the dualistic benign/malignant paradigm? J Clin Pathol 60:585–586

    Article  PubMed  Google Scholar 

  4. Gudbjartsson T et al (2005) Renal oncocytoma: a clinicopathological analysis of 45 consecutive cases. BJU Int 96:1275–1279

    Article  PubMed  Google Scholar 

  5. Cheng L et al (2009) Molecular and cytogenetic insights into the pathogenesis, classification, differential diagnosis, and prognosis of renal epithelial neoplasms. Hum Pathol 40:10–29

    Article  PubMed  CAS  Google Scholar 

  6. Cossu-Rocca P et al (2008) Interphase cytogenetic analysis with centromeric probes for chromosomes 1, 2, 6, 10, and 17 in 11 tumors from a patient with bilateral renal oncocytosis. Mod Pathol 21:498–504

    Article  PubMed  CAS  Google Scholar 

  7. Fuzesi L et al (1994) Renal oncocytoma with a translocation t(9;11) (p23;q13). J Urol 152:471–472

    PubMed  CAS  Google Scholar 

  8. Rohan S et al (2006) Gene expression profiling separates chromophobe renal cell carcinoma from oncocytoma and identifies vesicular transport and cell junction proteins as differentially expressed genes. Clin Cancer Res 12:6937–6945

    Article  PubMed  CAS  Google Scholar 

  9. Escudier B et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  10. Motzer RJ et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  PubMed  CAS  Google Scholar 

  11. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  Google Scholar 

  12. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464

    Article  PubMed  CAS  Google Scholar 

  13. Samuels Y, Ericson K (2006) Oncogenic PI3 K and its role in cancer. Curr Opin Oncol 18:77–82

    Article  PubMed  CAS  Google Scholar 

  14. Brenner W et al (2002) Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int J Cancer 99:53–57

    Article  PubMed  CAS  Google Scholar 

  15. Fuhrman SA, Lasky LC, Limas C (1982) Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 6:655–663

    Article  PubMed  CAS  Google Scholar 

  16. Merseburger AS et al (2006) Activation of the PKB/Akt pathway in histological benign prostatic tissue adjacent to the primary malignant lesions. Oncol Rep 16:79–83

    PubMed  CAS  Google Scholar 

  17. Merseburger AS et al (2005) Cathepsin D expression in renal cell cancer-clinical implications. Eur Urol 48:519–526

    Article  PubMed  CAS  Google Scholar 

  18. Pantuck AJ et al (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109:2257–2267

    Article  PubMed  CAS  Google Scholar 

  19. Downes CP et al (2001) Antagonism of PI 3-kinase-dependent signalling pathways by the tumour suppressor protein, PTEN. Biochem Soc Trans 29:846–851

    Article  PubMed  CAS  Google Scholar 

  20. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245

    Article  PubMed  CAS  Google Scholar 

  21. Vazquez F, Sellers WR (2000) The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta 1470:M21–M35

    PubMed  CAS  Google Scholar 

  22. Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183:10–17

    Article  PubMed  CAS  Google Scholar 

  23. Hennenlotter J et al (2008) PTEN and p27Kip1 are not downregulated in the majority of renal cell carcinomas-implications for Akt activation. Oncol Rep 19:1141–1147

    PubMed  CAS  Google Scholar 

  24. Breen EC (2007) VEGF in biological control. J Cell Biochem 102:1358–1367

    Article  PubMed  CAS  Google Scholar 

  25. Guijarro MV et al (2007) MAP17 inhibits Myc-induced apoptosis through PI3 K/AKT pathway activation. Carcinogenesis 28:2443–2450

    Article  PubMed  CAS  Google Scholar 

  26. Ignatoski KMW et al (2003) The role of phosphatidylinositol 3′-kinase and its downstream signals in erbB-2-mediated transformation. Mol Cancer Res 1:551–560

    Google Scholar 

  27. Kruck S et al (2011) High cytoplasmic expression of p27Kip1 is associated with a worse cancer-specific survival in clear cell renal cell carcinoma. BJU Int (in press)

  28. Viglietto G, Motti ML, Fusco A (2002) Understanding p27(kip1) deregulation in cancer: down-regulation or mislocalization. Cell Cycle 1:394–400

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bedke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amend, B., Hennenlotter, J., Scharpf, M. et al. Akt signalling parameters are different in oncocytomas compared to renal cell carcinoma. World J Urol 30, 353–359 (2012). https://doi.org/10.1007/s00345-011-0737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-011-0737-5

Keywords

Navigation