Skip to main content

Advertisement

Log in

The male biological clock

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Do men have biological clocks that affect their hormone levels, fertility, and the genetic quality of their sperm? Women can no longer be viewed as solely responsible for age-related fertility and genetic problems. The effects of andropause and advanced paternal age on fertility and offspring are still under investigation. Further research is needed to fully characterize the associated risks and to treat the underlying abnormalities. A better understanding of the cellular and biochemical mechanisms of “gonadal” aging is important in order to determine safe, effective ways to delay this process and “rewind” the male biological clock. The benefits may include decreasing the potential for adverse genetic consequences in offspring, improvement in the sexual and reproductive health of aging males, and increase a woman’s chance of having healthy children by correcting defects in the male reproductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harman S, Metter E, Tobin J, Pearson J, Blackman M (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab 86:724–31

    Article  CAS  PubMed  Google Scholar 

  2. McLachlan RI (2000) The endocrine control of spermatogenesis. Baillieres Best Pract Clin Endocrinol Metab 14:345–362

    Article  CAS  Google Scholar 

  3. Feldman H, Longcope C, Derby C, Johannes C, Araujo A, Coviello A, Bremner W, McKinlay J (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 87:589–598

    Article  CAS  PubMed  Google Scholar 

  4. Sparrow D, Bosse R, Rowe J (1980) The influence of age, alcohol consumption, and body build on gonadal function in men. J Clin Endocrinol Metab 51:508–512

    CAS  PubMed  Google Scholar 

  5. Vermeulen A, Rubens R, Verdonck L (1972) Testosterone secretion and metabolism in male senescence. J Clin Endocrinol Metab 34:730–735

    Article  CAS  PubMed  Google Scholar 

  6. Gray A, Berlin J, McKinlay J, Longcope C (1991) An examination of research design effects on the association of testosterone and male aging: results of a meta-analysis. J Clin Epidemiol 44:671–684

    Article  CAS  PubMed  Google Scholar 

  7. Rhoden E, Morgentaler A (2004) Risks of testosterone-replacement therapy and recommendations for monitoring. N Engl J Med 350:482–492

    Article  CAS  PubMed  Google Scholar 

  8. Tanemura K, Kurohmaru M, Kuramoto K, Hayashi Y (1993) Age-related morphological changes in the testis of the BDF1 mouse. J Vet Med Sci 55:703–710

    CAS  PubMed  Google Scholar 

  9. Wang C, Leung A, Sinha-Hikim A (1993) Reproductive aging in the male brown-Norway rat: a model for the human. Endocrinology 133:2773–2781

    Article  CAS  PubMed  Google Scholar 

  10. Lowe X, Collins B, Allen J, Titenko-Holland N, Breneman J, Beek M, Bishop J, Wyrobek A (1995) Aneuploidies and micronuclei in the germ cells of male mice of advanced age. Mutat Res 338:59–76

    CAS  PubMed  Google Scholar 

  11. Serre V, Robaire B (1998) Paternal age affects fertility and progeny outcome in the Brown Norway rat. Fertil Steril 70:625–631

    Article  CAS  PubMed  Google Scholar 

  12. Walter C, Intano G, McCarrey J, McMahan C, Walter R (1998) Mutation frequency declines during spermatogenesis in young mice but increases in old mice. Proc Natl Acad Sci USA 95:10015–10019

    Article  CAS  PubMed  Google Scholar 

  13. Kidd S, Eskenazi B, Wyrobek A (2001) Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril 75:237–248

    Article  CAS  PubMed  Google Scholar 

  14. Fisch H, Goluboff E, Olson J, Feldshuh J, Broder S, Barad D (1996) Semen analyses in 1,283 men from the United States over a 25-year period: no decline in quality. Fertil Steril 65:1009–1014

    CAS  PubMed  Google Scholar 

  15. Andolz P, Bielsa M, Vila J (1999) Evolution of semen quality in North-eastern Spain: a study in 22,759 infertile men over a 36 year period. Hum Reprod 14:731–735

    Article  CAS  PubMed  Google Scholar 

  16. Auger J, Kunstmann J, Czyglik F, Jouannet P (1995) Decline in semen quality among fertile men in Paris during the past 20 years. N Engl J Med 332:281–285

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz D, Mayaux M, Spira A, Moscato M, Jouannet P, Czyglik F, David G (1983) Semen characteristics as a function of age in 833 fertile men. Fertil Steril 39:530–535

    CAS  PubMed  Google Scholar 

  18. Rolf C, Behre H, Nieschlag E (1996) Reproductive parameters of older compared to younger men of infertile couples. Int J Androl 19:135–142

    CAS  PubMed  Google Scholar 

  19. Henkel R, Bittner J, Weber R, Huther F, Miska W (1999) Relevance of zinc in human sperm flagella and its relation to motility. Fertil Steril 71:1138–1143

    Article  CAS  PubMed  Google Scholar 

  20. Schneider E (1978) The aging reproductive system. Raven Press, New York

    Google Scholar 

  21. Johnson L (1986) Spermatogenesis and aging in the human. J Androl 7:331–354

    CAS  PubMed  Google Scholar 

  22. Mathieu C, Ecochard R, Bied V, Lornage J, Czyba J (1995) Cumulative conception rate following intrauterine artificial insemination with husband’s spermatozoa: influence of husband’s age. Hum Reprod 10:1090–1097

    CAS  PubMed  Google Scholar 

  23. Ford W, North K, Taylor H, Farrow A, Hull M, Golding J (2000) Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. The ALSPAC Study Team (Avon Longitudinal Study of Pregnancy and Childhood). Hum Reprod 15:1703–1708

    Article  CAS  PubMed  Google Scholar 

  24. Hamilton B, Martin J, Sutton P (2003) Births; Preliminary data for 2003. National Vital Statistics Report 53

  25. Yershalmy J (1939) Age of father and survival of offspring. Hum Biol 11:342–356

    Google Scholar 

  26. Slama R, Bouyer J, Windham G, Fenster L, Werwatz A, Swan S (2005) Influence of paternal age on the risk of spontaneous abortion. Am J Epidemiol 161:816–823

    Article  PubMed  Google Scholar 

  27. Nybo Andersen A, Hansen KD, Andersen P, Davey Smith G (2004) Advanced paternal age and risk of fetal death: a cohort study. Am J Epidemiol 160:1214–1222

    Article  PubMed  Google Scholar 

  28. de La Rochebrochard E, Thonneau P (2002) Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod 17:1649–1656

    Article  Google Scholar 

  29. Evans H (1996) Mutation and mutagenesis in inherited and acquired human disease. Mutat Res 351:89–103

    CAS  PubMed  Google Scholar 

  30. Roosen-Runge EC (1973) Germinal-cell loss in normal metazoan spermatogenesis. Reprod Fertil 35:339–348

    Article  CAS  Google Scholar 

  31. Sartorelli E, Mazzucatto L, Pina-Neto J (2001) Effect of paternal age on human sperm chromosomes. Fertil Steril 76:1119–1123

    Article  CAS  PubMed  Google Scholar 

  32. Singh N, Muller C, Berger R (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80:1420–1430

    Article  PubMed  Google Scholar 

  33. Lian A, Zack M, Eriskson J (1986) Paternal age and the occurrence of birth defects. Am J Hum Genet 39:648

    CAS  PubMed  Google Scholar 

  34. Glaser R, Broman K, Schulman R, Eskenazi B, Wyrobek A, Jabs E (2003) The paternal-age effect in Apert syndrome is due, in part, to the increased frequency of mutations in sperm. Am J Hum Genet 73:939–947

    Article  CAS  PubMed  Google Scholar 

  35. Orioli I, Castilla E, Scarano G, Mastroiacovo P (1995) Effect of paternal age on the origin of acondroplasia, thanatophoric dysplasia and osteogenesis imperfecta. Am J Med Genet 59:209–217

    Article  CAS  PubMed  Google Scholar 

  36. Rannan-Eliya S, Taylor I, De Heer M, Van Den Ouweland A, Wall S, Wilkie A (2004) Paternal origin of FGFr-3 mutation in Muenke-type craniosynostosis. Hum Genet 115:200–207

    Article  CAS  PubMed  Google Scholar 

  37. Cunningham F, MacDonald P, Gant N, Leveno K, Gilstrap C, Hankins G et al (1997) Williams obstetrics, 21st ed. McGraw-Hill, New York

    Google Scholar 

  38. Fisch H, Golden R, Libersen G, Hyun G, Madsen P, New MI, Hensle T (2001) Maternal age as a risk factor for hypospadias. J Urol 165:934–936

    Article  CAS  PubMed  Google Scholar 

  39. Ferguson-Smith M, Yates J (1984) Maternal age specific rates for chromosome aberrations and factors influencing them: report of a collaborative European study on 52,965 amniocenteses. Prenat Diagn 4:5–44

    PubMed  Google Scholar 

  40. Antonarakis S (1991) Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group. N Engl J Med 324:872–876

    Article  CAS  PubMed  Google Scholar 

  41. Jyothy A, Kumar K, Mallikarjuna G, Babu Rao V, Uma Devi B, Sujatha M, Reddy P (2001) Parental age and the origin of extra chromosome 21 in Down syndrome. J Hum Genet 46:347–350

    Article  CAS  PubMed  Google Scholar 

  42. Erickson J (1978) Down syndrome, paternal age, maternal age and birth order. Ann Hum Genet 41:289–298

    Article  CAS  PubMed  Google Scholar 

  43. Hook E (1987) Issues in analysis of data on paternal age and 47:+21: implication for genetic counseling for Down syndrome. Hum Genet 77:303–306

    Article  CAS  PubMed  Google Scholar 

  44. Erickson J, Bjerkedal T (1981) Down syndrome associated with father’s age in Norway. J Med Genet 18:22–28

    Article  CAS  PubMed  Google Scholar 

  45. Fisch H, Hyun G, Golden R, Hensle T, Olsson C, Liberson G (2003) The influence of paternal age on Down syndrome. J Urol 169:2275–2278

    Article  PubMed  Google Scholar 

  46. Kendler K, Diehl S (1993) The genetics of schizophrenia: a current genetic-epidemiologica perspective. Schizophr Bull 19:261–285

    CAS  PubMed  Google Scholar 

  47. Fananas L, Bertranpetit J (1991) Reproductive rates in families of schizophrenic patients in a case-control study. Acta Psychiatr Scand 99:441–446

    Google Scholar 

  48. Gregory I (1959) An analysis of family data on 1000 patients admitted to a Canadian mental hospital. Acta Genet Stat Med 9:54–56

    CAS  PubMed  Google Scholar 

  49. Hare E, Moran P (1979) Raised paternal age in psychiatric patients: evidence for the constitutional hypothesis. Br J Psychiatry 134:169–177

    Article  CAS  PubMed  Google Scholar 

  50. Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingson T, Owen M, Lewis G (2003) Paternal age and risk for schizophrenia. Br J Psych 183:405–408

    Article  Google Scholar 

  51. Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, Susser E (2001) Advancing paternal age and the risk of schizophrenia. Arch Gen Psych 58:361–367

    Article  CAS  Google Scholar 

  52. Sipos A, Fasmussen F, Harrison G, Tynelius P, Lewis G, Leon D, Gunnell D (2004) Paternal age and schizophrenia: a population based cohort study. BMJ 329:1070

    Article  PubMed  Google Scholar 

  53. Fisch H (2005) The male biological clock. Free Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Fisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, S.M., Masson, P. & Fisch, H. The male biological clock. World J Urol 24, 611–617 (2006). https://doi.org/10.1007/s00345-006-0130-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-006-0130-y

Keywords

Navigation