Skip to main content
Log in

MicroRNA Expression Profiles in Moringa oleifera Lam. Seedlings at Different Growth Conditions

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs which modulate gene expression, promoting the degradation of target mRNAs or altering their translation. In the last decade, the role of miRNAs has been largely investigated, providing interesting evidence about the key role of these molecules in plant cell and molecular biology. Recently, our research team has sequenced the miRNome of Moringa oleifera Lam., a plant species widely used in African ethnobotanical traditions, including food practices and folk medicine. In addition, in the last years, our group has also evaluated the differences between the miRNomes from the M. oleifera leaf and leaf-derived callus, respectively. The present communication reports the study of the miRNA expression profile in M. oleifera young plants grown in vitro under different conditions. In particular, seedlings/young plants cultivated for 2, 15, 30, and 60 days or grown for 30 days and subjected for other 30 days to biotic (i.e., chemical inducer of systemic acquired resistance) and abiotic (i.e., darkness, cold) stressors were analyzed. After nucleic acid extraction and retrotranscription, the level of 19 specific miRNAs was evaluated by qPCR assay. Overall, the amount of all miRNAs was higher in 2-day-old seedlings than in older ones. Cold and biotic stimuli induced the overexpression of more than half of the miRNA set, while darkness triggered downregulation or stabilization of most examined miRNAs. In order to clarify the molecular networks and signalling pathways potentially modulated by moringa miRNAs, the putative mRNA targets of the selected miRNAs were predicted using the psRNATarget bioinformatics approach. This study presents novel and interesting information about the role of specific miRNAs in M. oleifera seedlings during their initial developmental stages, as well as in the presence of simulated environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

The present research has data included as electronic supplemental material.

References

  • Aquilano K, Ceci V, Gismondi A, De Stefano S, Iacovelli F, Faraonio R et al (2019) Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Comm Biol 2:1–13

    Article  CAS  Google Scholar 

  • Arora S, Rana R, Chhabra A, Jaiswal A, Rani V (2013) miRNA–transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genom 288:77–87

    Article  CAS  Google Scholar 

  • Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53:474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: Star players for plant growth and development. J Integr Plant Biol 52:946–951

    Article  CAS  PubMed  Google Scholar 

  • Colombatti F, Gonzalez DH, Welchen E (2014) Plant mitochondria under pathogen attack: a sigh of relief or a last breath? Mitochondrion 19:238–244

    Article  CAS  PubMed  Google Scholar 

  • Cooper RM, Williams JS (2004) Elemental sulphur as an induced antifungal substance in plant defence. J Exp Bot 55:1947–1953

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 46:W49–W54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey RS (1999) Protein synthesis by plants under stressful conditions. Handbook Plant Crop Stress 2:365–397

    Article  Google Scholar 

  • Fiorillo A, Mattei M, Aducci P, Visconti S, Camoni L (2020) The salt tolerance related protein (STRP) mediates cold stress responses and abscisic acid signalling in Arabidopsis thaliana. Front Plant Sci 13:1251

    Article  Google Scholar 

  • Gismondi A, Di Marco G, Canini A (2017) Detection of plant microRNAs in honey. PLoS ONE 12:e0172981

    Article  PubMed  PubMed Central  Google Scholar 

  • Gismondi A, Nanni V, Monteleone V, Colao C, Di Marco G, Canini A (2021) Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12. Mol Biol Rep 48:435–449

    Article  CAS  PubMed  Google Scholar 

  • Goff KE, Ramonell KM (2007) The role and regulation of receptor-like kinases in plant defense. Gene Regul Syst Biol 1:167175

    Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  Google Scholar 

  • Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genom Proteom Bioinform 9:183–199

    Article  CAS  Google Scholar 

  • Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch S, Oldroyd GE (2009) GRAS-domain transcription factors that regulate plant development. Plant Signal Behav 4:698–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta Gene Regul Mec 1819:137–148

    Article  CAS  Google Scholar 

  • Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J 88:1058–1070

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Mendelssohn IA, Chen H, Orem WH (2009) Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades? Freshw Biol 54:1909–1923

    Article  CAS  Google Scholar 

  • Lu X, Liu W, Xiang C, Li X, Wang Q, Wang T et al (2020) Genome-wide characterization of GRAS family and their potential roles in cold tolerance of cucumber (Cucumis sativus L.). Int J Mol Sci 21:3857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma ZF, Ahmad J, Zhang H, Khan I, Muhammad S (2020) Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. S Afr J Bot 129:40–46

    Article  CAS  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. BioResources 4:1694–1717

    Google Scholar 

  • Meng Y, Shao C, Wang H, Chen M (2011) The regulatory activities of plant microRNAs: a more dynamic perspective. Plant Physiol 157:1583–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minutolo A, Potestà M, Gismondi A, Pirrò S, Cirilli M, Gattabria F, Galgani A, Sessa L, Mattei M, Canini A et al (2018) Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  • Minutolo A, Potestà M, Roglia V, Cirilli M, Iacovelli F, Cerva C, Fokam J, Desideri A, Andreoni M, Grelli S et al (2021) Plant microRNAs from Moringa oleifera regulate immune response and HIV infection. Front Pharmacol 11:620038

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Naqvi AR (2020) Immunomodulatory roles of human herpesvirus-encoded microRNA in host-virus interaction. Rev Med Virol 30:e2081

    Article  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PV, Jugulam M (2020) Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9:454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegler JL, Oultram JMJ, Grof CPL, Eamens AL (2019) Profiling the abiotic stress responsive microRNA landscape of Arabidopsis thaliana. Plants 8:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirrò S, Zanella L, Kenzo M, Montesano C, Minutolo A, Potestà M et al (2016) MicroRNA from Moringa oleifera: identification by high throughput sequencing and their potential contribution to plant medicinal value. PLoS ONE 11:e0149495

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirrò S, Matic I, Guidi A, Zanella L, Gismondi A, Cicconi R et al (2019) Identification of microRNAs and relative target genes in Moringa oleifera leaf and callus. Sci Rep 9:1–14

    Google Scholar 

  • Place RF, Li L, Pookot D, Noonan EJ, Dahiya R (2008) Micro-RNA-373 induces expression of genes with complementary promoter sequences. PNAS 105:1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala-Cirtog M, Marian C, Anghel A (2015) New insights of medicinal plant therapeutic activity—the miRNA transfer. Biomed Pharmacother 74:228–232

    Article  CAS  PubMed  Google Scholar 

  • Samad AFA, Kamaroddin MF, Sajad M (2021) Cross-kingdom regulation by plant microRNAs provides novel insight into gene regulation. Adv Nutr 12:197–211

    Article  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valinezhad-Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics. https://doi.org/10.1155/2014/970607

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Vimal S, Janardan Y (2011) Effect of copper sulphate on seed germination, plant growth and peroxidase activity of mung bean (Vigna radiata). Int J Bot 7:200–204

    Article  CAS  Google Scholar 

  • Visconti S, D’Ambrosio C, Fiorillo A, Arena S, Muzi C, Zottini M, Aducci P, Marra M, Scaloni A, Camoni L (2019) Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants. Plant Sci 289:110215

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu D, Zhang X, Chen D, Cheng Y, Shen F (2018) Plant microRNAs in cross-kingdom regulation of gene expression. Int J Mol Sci 19:2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Zhang S, Yu B (2015) MicroRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72:87–99

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, Xin H (2016) Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep 35:655–666

    Article  CAS  PubMed  Google Scholar 

  • Zanella L, Gismondi A, Di Marco G, Braglia R, Scuderi F, Redi EL et al (2019) Induction of antioxidant metabolites in Moringa oleifera callus by abiotic stresses. J Nat Prod 82:2379–2386

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present research was funded by the University of Rome “Tor Vergata” through the grant Consolidate the Foundations 2015 (Progetti finanziati di Ateneo); project name “Moringa oleifera-derived microRNAs regulation of human gene expression: uncovering a secret cross-kingdom signaling—MIRAGE”; project code CUP: E82F16000610005.

Author information

Authors and Affiliations

Authors

Contributions

AG, LC, RB and GDM: Performed the analyses; MM, AC, CM, LC, and AG: developed the scientific project; AC: financed the research; AG and GDM: wrote the MS; all authors revised the MS and discussed the data.

Corresponding author

Correspondence to Angelo Gismondi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Saddam Hussain.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 362 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gismondi, A., Di Marco, G., Camoni, L. et al. MicroRNA Expression Profiles in Moringa oleifera Lam. Seedlings at Different Growth Conditions. J Plant Growth Regul 42, 2115–2123 (2023). https://doi.org/10.1007/s00344-022-10686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10686-2

Keywords

Navigation