Skip to main content

Advertisement

Log in

Trichoderma viride—Mediated Modulation of Oxidative Stress Network in Potato Challenged with Alternaria solani

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Potato is a staple food crop cultivated globally. Heavy losses to potato production are reported annually due to soil borne phytopathogens. Trichoderma viride is a potential biocontrol agent that improves host defense. In the present study, potato tubers bio-primed with T. viride were studied for its effect on growth promotion and modulation of antioxidant system as well as defense-related enzymes in potato plants when challenged with Alternaria solani. Potato tubers treated with T. viride and after 45 days of sowing, plants were challenged with pathogen. Significant improvement in various growth parameters was recorded in bio-primed plants. While, in pathogen-challenged plants, an enhanced intracellular concentration of H2O2 and O2 was observed. Interestingly, T. viride when applied with pathogen, significantly improved the redox homeostasis by modulating the antioxidant enzyme activities. The significant induction of defense enzymes and free phenolic content suggested that T. viride-treated plants provide enhanced protection from oxidative stress induced during A. solani challenge via. elevated accumulation of antioxidant enzymes, polyphenolic compounds, and defense-related enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aamir M, Sarvesh PK, Andleeb Z, Manish KD, Vinay KS, Waquar AA, Ram SU, Surendra S (2019) Trichoderma erinaceum bio-priming modulates the WRKYs defense programming in tomato against the Fusarium oxysporum f. sp. lycopersici (Fol) challenged condition. Front Plant Sci 10:911

    Article  PubMed  PubMed Central  Google Scholar 

  • Aebi H (1984) Catalase. In: Packer L (ed) Methods in enzymology. Academic Press, Orlando, pp 121–126

    Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Salih G (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868

    Article  PubMed  PubMed Central  Google Scholar 

  • Airaki M, Marina L, Rosa MM, Raquel V, Mounira C, Juan BB, Luis ADR, Jose MP, Francisco JC (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35:281–295

    Article  CAS  PubMed  Google Scholar 

  • Alfiky A, Weisskopf L (2021) Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. J Fungi 7:61

    Article  CAS  Google Scholar 

  • Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant Microbe Interact 26:937–945

    Article  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Attia MS, El-Sayyad GS, Abd Elkodous M, El-Batal AI (2020) The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Sci Hortic 266:109289

    Article  CAS  Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxi Med Cellu Lon 2014:360438

    Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bigirimana J, De Meyer G, Poppe J, Hoefte M (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouwwet Univ Gent 62:1001–1007

    Google Scholar 

  • Bokhari NA, Perveen K (2012) Antagonistic action of Trichoderma harzianum and Trichoderma viride against Fusarium solani causing root rot of tomato. Afr J Microbiol Res 6:7193–7197

    Google Scholar 

  • Brotman Y, Lisec J, Meret M, Chet I, Viterbo WL, A, (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiol 158:139–146

    Article  CAS  Google Scholar 

  • Brueske CH (1980) Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the root knot nematode Meloidogyne incognita. Physiol Plant Pathol 16:409–414

    Article  CAS  Google Scholar 

  • Carrero-Carrón I, Rubio MB, Niño-Sánchez J, Navas JA, Jiménez-Díaz RM, Monte E, Hermosa R (2018) Interactions between Trichoderma harzianum and defoliating Verticillium dahliae in resistant and susceptible wild olive clones. Plant Pathol 67:1758–1767

    Article  Google Scholar 

  • Chitara MK, Chetan K, Kyriakos GV, Hareram B, Hagera D, Surya PS, Viji S, Jonathan S, Harikesh BS (2020) Impact of the alkaloid colletotrichumine A on the pathogenicity of Colletotrichum capsici in Capsicum annum L. Rhizosphere 16:100247

    Article  Google Scholar 

  • Chohan S, Perveen R, Mehmood MA, Naz S, Akram N (2015) Morpho-physiological studies, management and screening of tomato germplasm against Alternaria solani, the causal agent of tomato early blight. Inter J of Agri Biol 17:111–118

    Google Scholar 

  • Christopher DJ, Raj TS, Rani SU, Udhayakumar R (2010) Role of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici. J Biopest 3:158

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Alfaro Cuevas R, López-Bucio J (2014) Trichoderma improves growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production and Na? elimination through root exudates. Mol Plant Microbe Interact 27:503–514

    Article  CAS  PubMed  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Euro J Plant Pathol 104:279–286

    Article  Google Scholar 

  • De P, Monica K, Maria S, Clizia V, Riccardo A, Matteo L, Michelina R, Teresa D, Anna LP, Nunzio DA, Marina T (2019) Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Hortic Res 6:5

    Article  Google Scholar 

  • Dehghanian Z, Habibi K, Dehghanian M, Aliyar S, Lajayer BA, Astatkie T, Minkina T, Keswani C (2022) Reinforcing the bulwark: unravelling the efficient applications of plant phenolics and tannins against environmental stresses. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e09094

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilnashin H, Birla H, Hoat TX, Singh HB, Singh SP, Keswani C (2020) Applications of agriculturally important microorganisms for sustainable crop production. Molecular aspects of plant beneficial microbes in agriculture. Academic Press, Cambridge, pp 403–415

    Chapter  Google Scholar 

  • Edreva AA (2004) Novel strategy for plant protection: induced resistance. J Cell Mol Biol 3:61–69

    Google Scholar 

  • El-Khallal SM (2007) Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (Arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related proteins. Aust J Basic Appl Sci 1:717–732

    CAS  Google Scholar 

  • El-Zahaby HB, Gullner G, Kira´ly Z (1995) Effects of powdery mildew infection of barley on the ascorbate–glutathione cycle and other antioxidants in different host-pathogen interactions. Biochem Cell Biol 85:1225–1230

    CAS  Google Scholar 

  • Faoro F, Iriti M (2005) Cell death behind invisible symptoms: early diagnosis of ozone injury. Biol Plant 49:585–592

    Article  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Ntahimpera N, Christ BJ, Lin GY (2000) Comparison of field, green house, and detached-leaflet evaluation of tomato germplasm for early blight resistance. Plant Dis 84:967–972

    Article  CAS  PubMed  Google Scholar 

  • Gajera HP, Savaliya DD, Patel SV, Golakiya BA (2015) Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.). Infec Gene Evol 34:314–325

    Article  CAS  Google Scholar 

  • Gauillard F, Richard-Forget F, Nicolas J (1993) A new spectrophotometric assay for polyphenol oxidase activity. Anal Biochem 215:59–65

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Halifu S, Deng X, Song X, Song R (2019) Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 10:758

    Article  Google Scholar 

  • Hammerschmidt R (2005) Phenols and plant-pathogen interactions: the saga continues. Physiol Mol Plant Pathol 66:77–78

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiol 158:17–25

    Article  CAS  Google Scholar 

  • Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathol 90:248–252

    Article  CAS  Google Scholar 

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211

    Article  CAS  Google Scholar 

  • Jain A, Singh A, Singh S, Sarma BK, Singh HB (2015) Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum–pea interaction. J Basic Microbiol 55:601–606

    Article  CAS  PubMed  Google Scholar 

  • Jetiyanon K (2007) Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biol Cont 42:178–185

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kang KM, Saltveit ME (2002) Chilling tolerance of corn, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defence-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Brazil J of Plant Physiol 18:367–377

    Article  CAS  Google Scholar 

  • Keswani C, Bisen K, Chitara MK, Sarma BK, Singh HB (2017) Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens. Agro-environmental sustainability. Springer, Cham, pp 63–79

    Google Scholar 

  • Keswani C, Dilnashin H, Birla H, Singh SP (2019) Unravelling efficient applications of agriculturally important microorganisms for alleviation of induced inter-cellular oxidative stress in crops. Acta Agric Slov 114(1):121–130

    Article  Google Scholar 

  • Keswani C (2015) Proteomic Studies of Thermotolerant Strain of Trichoderma spp. Ph.D. thesis, Banaras Hindu University, Varanasi, India. p. 126

  • Khalil MI, Youssef SA, Tartoura KA, Eldesoky AA (2021) Comparative evaluation of physiological and biochemical alteration in tomato plants infected by Alternaria alternata in response to Trichoderma viride and Chaetomium globosum application. Physiol Mol Plant Pathol 115:101671

    Article  CAS  Google Scholar 

  • Kumar S, Chandra R, Behera L, Keswani C, Sansinenea E (2021) Dual Trichoderma consortium mediated elevation of systemic defense response against early blight in potato. Eur J Plant Pathol 162(3):681–696

    Article  Google Scholar 

  • Kuzniak E, Urbanek H (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant 22:195–203

    Article  CAS  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10270–10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann S, Serrano ML, Haridon F, Tjamos SE, Metraux JP (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochem 112:54–62

    Article  CAS  Google Scholar 

  • Lombardi N, Simonetta C, Antonio DT, Andrea S, Paola V, Francesco V, Roberta M, Anna MS, Matteo L, Sheridan LW (2020) Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Front Microbiol 11:1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Lubaina AS, Murugan K (2013) Ultrastructural changes and oxidative stress markers in wild and cultivar Sesamum orientale L. following Alternaria sesami (Kawamura) Mohanty and Behera. inoculation. Indian J Exp Boil 51:670–680

    CAS  Google Scholar 

  • Mhamdi A, Van Breusegem F (2018) Reactive oxygen species in plant development. Develop 145:164376

    Article  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integra Plant Biol 52:195–204

    Article  CAS  Google Scholar 

  • Nunn N, Qian N (2011) The potato’s contribution to population and urbanization: evidence from a historical experiment. Q J Econ 126:593–650

    Article  PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel JS, Kharwar RN, Singh HB, Upadhyay RS, Sarma BK (2017) Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Front Microbiol 8:306

    Article  PubMed  PubMed Central  Google Scholar 

  • Philosoph-Hadas S, Meir S, Akiri B, Kanner J (1994) Oxidative defense systems in leaves of three edible herb species in relation to their senescence rates. J Agri Food Chem 42:2376–2381

    Article  CAS  Google Scholar 

  • Pitzschke A, Hirt H (2009) Disentangling the complexity of mitogen-activated protein kinases and reactive oxygen species signaling. Plant Physiol 149:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragazzi E, Veronese G (1973) Quantitative analysis of phenolic compounds after thin layer chromatographic separation. J Chromatogr 77:369–375

    Article  CAS  PubMed  Google Scholar 

  • Ram RM, Tripathi R, Birla H, Dilnashin H, Singh SP, Keswani C (2019) Mixed PGPR consortium: an effective modulator of antioxidant network for management of collar rot in cauliflower. Arch Phytopathol Pflanzenschutz 52(7–8):844–862

    Article  CAS  Google Scholar 

  • Rashid TS, Qadir SA, Awla HK (2021) Induction of defence related enzymes and biocontrol efficacy of Trichoderma harzianum in tomato plants infected with Fusarium oxysporum and Fusarium solani. Acta Agric Slov 117:1–6

    Article  Google Scholar 

  • Saed-Moucheshi A, Pakniyat H, Pirasteh-Anosheh H, Azooz MM (2014) Role of ROS as signaling molecules in plants. Oxidative damage to plants. Academic Press, Cambridge, pp 585–620

    Chapter  Google Scholar 

  • Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27

    Article  CAS  PubMed  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  CAS  Google Scholar 

  • Sellers RM (1980) Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst 105:950–954

    Article  CAS  Google Scholar 

  • Shetty NP, Mehrabi R, Lutken H, Haldrup A, Kema GH, Collenge DP, Jorgenson HJ (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:1–23

    Article  Google Scholar 

  • Shuman J, Christ B (2005) Integrating a host-resistance factor into the fast system to forecast early blight of potato. Am J Potato Res 82:9–19

    Article  Google Scholar 

  • Siddaiah CN, Niranjan RS, Venkataramana M, Vijai KG, Selvakumar G, Shobith R, Shekar SH, Rakesh KS (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:1–18

    Article  Google Scholar 

  • Singh BN, Singh BR, Sarma BK, Singh HB (2009) Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem Biol Interac 181:20–28

    Article  CAS  Google Scholar 

  • Singh BN, Singh A, Singh SP, Singh HB (2011) Trichoderma harzianum-mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani. Eur J Plant Pathol 131:121–134

    Article  CAS  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013a) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Singh HB, Singh DK (2013b) Trichoderma harzianum and Pseudomonas sp. mediated management of Sclerotium rolfsii rot in tomato (Lycopersicon esculentum mill.). Bioscan 8:801–804

    Google Scholar 

  • Singh V, Ray S, Bisen K, Keswani C, Upadhyay RS, Sarma BK, Singh HB (2017) Unravelling the dual applications of Trichoderma spp. as biopesticide and biofertilizer. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, Wallingford, pp 364–374

    Chapter  Google Scholar 

  • Singh HB, Keswani C, Reddy MS, Royano ES, García-Estrada C (2019) Secondary metabolites of plant growth promoting rhizomicroorganisms: discovery and applications. Springer, Singapore, p 392

    Book  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim 54:39

    Article  CAS  Google Scholar 

  • Swain H, Adak T, Mukherjee AK, Sarangi S, Samal P, Khandual A, Jena R, Bhattacharyya P, Naik SK, Mehetre ST, Baite MS (2021) Seed Biopriming with Trichoderma strains isolated from tree bark improves plant growth, antioxidative defense system in rice and enhance straw degradation capacity. Front Microbiol 12:240

    Article  Google Scholar 

  • Tewari RK, Bachmann G, Hadacek F (2015) Iron in complex with the alleged phytosiderophore 8-hydroxyquinoline induces functional iron deficiency and non-autolytic programmed cell death in rapeseed plants. Environ Exp Bot 109:151–160

    Article  CAS  Google Scholar 

  • Torres MA, Jonathan DG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogen. Plant Physiol 141:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi R, Keswani C, Tewari R (2021) Trichoderma koningii enhances tolerance against thermal stress by regulating ROS metabolism in tomato (Solanum lycopersicum L.) plants. J Plant Interact 16(1):116–125

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  CAS  PubMed  Google Scholar 

  • Waszczak C, Kerchev PI, Muhlenbock P, Hoeberichts FA, Van Der Kelen K, Mhamdi A (2016) SHORT-ROOT deficiency alleviates the cell death phenotype of the Arabidopsis catalase2 mutant under photorespiration-promoting conditions. Plant Cell 28:1844–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams R, Rohr AM, Wang WT, Choi IY, Lee P, Berman NEJ, Lynch SG, LeVine SM (2011) Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis. BMC Neurosci 12:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson PS, Ketola EO, Ahvenniemi PM, Lehtonen MJ, Valkonen JPT (2008) Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathol 57:152–161

    Google Scholar 

  • Wudick MM, Li XJ, Valentini V, Geldner N, Chory J, Lin J, Maural C, Luu DT (2015) Subcellular redistribution of root aquaporins induced by hydrogen peroxide. Mol Plant 8:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Qin G, Tian S (2008) Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen. Inter J of Food Microbio 126:153–158

    Article  CAS  Google Scholar 

  • Yadav M, Dubey MK, Upadhyay RS (2021) Systemic resistance in chilli pepper against anthracnose (caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. J Fungi 7:307

    Article  CAS  Google Scholar 

  • Yanar YA, Gökçe I, Kadioglu H, Çam H, Whalon M (2011) In vitro antifungal evaluation of various plant extracts against early blight disease (Alternaria solani) of potato. Afr J Biotechnol 10:8291–8295

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem K, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and the accumulation of phytoalexins. App Envir Microbio 69:7343–7353

    Article  CAS  Google Scholar 

  • Zeng J, Dong Z, Wu H, Tian Z, Zhao Z (2017) Redox regulation of plant stem cell fate. EMBO J 36:2844–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xu F, Wu Y, Hu HH, Dai XF (2017) Progress of potato staple food research and industry development in China. J Integr Agric 16:2924–2932

    Article  Google Scholar 

Download references

Acknowledgements

CK gratefully acknowledges the financial support from the Ministry of Science and Higher Education of the Russian Federation project on the development of the Young Scientist Laboratory (No. LabNOTs-21-01AB) and by the Strategic Academic Leadership Program of the Southern Federal University (“Priority 2030”).

Author information

Authors and Affiliations

Authors

Contributions

SK, RC, CK, and TM were involved in idea generation. SK, RC, and CK did the experiments. SK, MM, and MV conducted statistical analysis. SK, RC, CK, and SM were involved in manuscript preparation. All the authors reviewed and edited the contents.

Corresponding author

Correspondence to Chetan Keswani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and Animals

Not applicable.

Additional information

Handling Editor: Paloma Sanchez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Chandra, R., Keswani, C. et al. Trichoderma viride—Mediated Modulation of Oxidative Stress Network in Potato Challenged with Alternaria solani. J Plant Growth Regul 42, 1919–1936 (2023). https://doi.org/10.1007/s00344-022-10669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10669-3

Keywords

Navigation