Skip to main content
Log in

Genome-Wide Characterization, Evolution, and Expression Analysis of the Ascorbate Peroxidase and Glutathione Peroxidase Gene Families in Response to Cold and Osmotic Stress in Ammopiptanthus nanus

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ascorbate peroxidase (APX) and glutathione peroxidase (GPX) are two families of essential peroxidases that maintain redox balance in cells by catalyzing the reduction of hydrogen peroxide. Ammopiptanthus nanus is a rare broad-leaved evergreen shrub that lives in the temperate desert areas of Central Asia and exhibits strong resistance to low temperature and water stress. GPX and APX family members might contribute to the stress response of A. nanus by participating in reactive oxygen species scavenging. In the present study, APX and GPX family members in A. nanus were identified and their structure, evolution, and expression patterns under stress conditions were investigated. A total of 8 GPX genes, 6 APX genes, and 1 APX-like gene were identified in A. nanus, and these genes were unevenly distributed on 7 chromosomes. These APXs and GPXs showed conservation in amino acid sequence, three-dimensional structure, and intron–exon structure. The GPX gene family in A. nanus expanded in gene number, and the expansions were mainly driven by segmental duplication caused by large-scale duplication events in the evolution of Tribe Sophoreae and might play important roles in the freezing and drought tolerance in A. nanus. Expression profiling based on RNA-seq datasets and qRT-PCR analysis showed that most of the APX and GPX members were differentially expressed under osmotic and cold stress, which is in line with the high copies of stress and hormone response-related cis-acting elements predicted from the promoters of the APX and GPX family genes. The study provided new insight into the evolution of APX and GPX family and promoted the understanding of the molecular mechanism underlying the stress tolerance of A. nanus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Reviewer link created for sequencing data: SRR11087599—SRR11087604 https://dataview.ncbi.nlm.nih.gov/object/PRJNA606701?reviewer=gbki2lq3ssbmc0psm6lv050o0m, SRR11089024—SRR11089029 https://dataview.ncbi.nlm.nih.gov/object/PRJNA606763?reviewer=o3qunru9tm14mma28jrk1nrah2, SRR11262903—SRR11262908 https://dataview.ncbi.nlm.nih.gov/object/PRJNA611040?reviewer=edl67d9oj6kt6aqmrpc8698oac

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    Article  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208

    Article  CAS  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  Google Scholar 

  • Buchel AS, Brederode FT, Bol JF, Linthorst HJM (1999) Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol Biol 40:387–396

    Article  CAS  Google Scholar 

  • Cao S, Wang Y, Li Z, Shi W, Gao F, Zhou Y, Zhang G, Feng J (2019) Genome-wide identification and expression analyses of the chitinases under cold and osmotic stress in Ammopiptanthus nanus. Genes 10:472

    Article  CAS  Google Scholar 

  • Chen M, Li K, Li H, Song CP, Miao Y (2017) The Glutathione peroxidase gene family in Gossypium hirsutum: genome-wide identification, classification, gene expression and functional analysis. Sci Rep 7:44743

    Article  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2018) TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv 13(8):1194–1202

    Google Scholar 

  • Collings DA (2013) Subcellular localization of transiently expressed fluorescent fusion proteins. Methods Mol Biol 1069:227–258

    Article  CAS  Google Scholar 

  • Dąbrowska G, Kata A, Goc A, Szechynska-Hebda M, Skrzypek E (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biol Cracov Ser Bot 49:7–17

    Google Scholar 

  • Deng LQ, Yu HQ, Liu YP, Jiao PP, Zhou SF, Zhang SZ, Li WC, Fu FL (2014) Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco. Gene 539:132–140

    Article  CAS  Google Scholar 

  • Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7:e1002195

    Article  CAS  Google Scholar 

  • Elliott KA, Shirsat AH (1998) Promoter regions of the extA extensin gene from Brassica napus control activation in response to wounding and tensile stress. Plant Mol Biol 37:675–687

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  Google Scholar 

  • Gao F, Chen J, Ma T, Li H, Wang N, Li Z, Zhang Z, Zhou Y (2014) The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions. Int J Mol Sci 15:3319–3335

    Article  Google Scholar 

  • Gao F, Wang J, Wei S, Li Z, Wang N, Li H, Feng J, Li H, Zhou Y, Zhang F (2015) Transcriptomic analysis of drought stress responses in Ammopiptanthus mongolicus leaves using the RNA-Seq technique. PLoS ONE 10:e0124382

    Article  Google Scholar 

  • Gao F, Li H, Xiao Z, Wei C, Feng J, Zhou Y (2018a) De novo transcriptome analysis of Ammopiptanthus nanus and its comparative analysis with A. mongolicus. Trees 32:287–300

    Article  CAS  Google Scholar 

  • Gao F, Wang X, Li X, Xu M, Li H, Abla M, Sun H, Wei S, Feng J, Zhou Y (2018b) Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub. GigaScience 7:giy074

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Granlund I, Storm P, Schubert M, García-Cerdán JG, Funk C, Schröder WP (2009) The TL29 protein is lumen located, associated with PSII and not an ascorbate peroxidase. Plant Cell Physiol 50:1898–1910

    Article  CAS  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  Google Scholar 

  • Jespersen HM, Kjaersgård IV, Ostergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  • Kieselbach T, Bystedt M, Hynds P, Robinson C, Schröder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480:271–276

    Article  CAS  Google Scholar 

  • Kizis D, Pages M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594

    Article  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  CAS  Google Scholar 

  • Macdonald IK, Badyal SK, Ghamsari L, Moody PCE, Raven EL (2006) Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis. Biochemistry 45:7808–7817

    Article  CAS  Google Scholar 

  • Milla MAR, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genomics 279:171–182

    Article  CAS  Google Scholar 

  • Nguyen MN, Tan KP, Madhusudhan MS (2011) CLICK–topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res 39:W24–W28

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) ASCORBATE AND GLUTATHIONE: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  Google Scholar 

  • Örvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11:1297–1305

    Article  Google Scholar 

  • Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX, Anjum NA (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301

    Article  Google Scholar 

  • Pandey P, Singh J, Achary VMM, Reddy MK (2015) Redox homeostasis via gene families of ascorbate-glutathione pathway. Front Environ Sci 3:25

    Article  Google Scholar 

  • Pellinen RI, Korhonen MS, Tauriainen AA, Palva ET, Kangasjärvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol 130:549–560

    Article  CAS  Google Scholar 

  • Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204

    Article  CAS  Google Scholar 

  • Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ, Herman B, Richardson A, Van Remmen H (2004) Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279:55137–55146

    Article  CAS  Google Scholar 

  • Ross EJ, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G (2004) Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J Exp Bot 55:1721–1731

    Article  CAS  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406

    Article  CAS  Google Scholar 

  • Savojardo C, Martelli PL, Fariselli P, Profiti G, Casadio R (2018) BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res 46:W459–W466

    Article  CAS  Google Scholar 

  • Seo S, Seto H, Koshino H, Yoshida S, Ohashi Y (2003) A diterpene as an endogenous signal for the activation of defense responses to infection with tobacco mosaic virus and wounding in tobacco. Plant Cell 15:863–873

    Article  CAS  Google Scholar 

  • Shi W, Liu PL, Duan L, Pan BR, Su ZH (2017) Evolutionary response to the Qinghai-Tibetan Plateau uplift: phylogeny and biogeography of Ammopiptanthus and tribe Thermopsideae (Fabaceae). PeerJ 5:e3607

    Article  Google Scholar 

  • Tao C, Jin X, Zhu L, Xie Q, Wang X, Li H (2018) Genome-wide investigation and expression profiling of APX gene family in Gossypium hirsutum provide new insights in redox homeostasis maintenance during different fiber development stages. Mol Genet Genomics 293:685–697

    Article  CAS  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Galvão VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  CAS  Google Scholar 

  • UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  Google Scholar 

  • Wall PK, Leebens-Mack J, Müller KF, Field D, Altman NS, dePamphilis CW (2008) PlantTribes: a gene and gene family resource for comparative genomics in plants. Nucleic Acids Res 36:D970–D976

    Article  CAS  Google Scholar 

  • Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinform 8:77–80

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Kissinger JC (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49

    Article  CAS  Google Scholar 

  • Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  Google Scholar 

  • Yin Y, Jiang X, Ren M, Xue M, Nan D, Wang Z, Wang M (2018) AmDREB2C, from Ammopiptanthus mongolicus, enhances abiotic stress tolerance and regulates fatty acid composition in transgenic Arabidopsis. Plant Physiol Biochem 130:517–528

    Article  CAS  Google Scholar 

  • Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406

    Article  CAS  Google Scholar 

  • Yu HQ, Yong TM, Li HJ, Liu YP, Zhou SF, Fu FL, Li WC (2015) Overexpression of a phospholipase Dα gene from Ammopiptanthus nanus enhances salt tolerance of phospholipase Da1-deficient Arabidopsis mutant. Planta 242:1495–1509

    Article  CAS  Google Scholar 

  • Yu HQ, Zhou XY, Wang YG, Zhou SF, Fu FL, Li WC (2017) A betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus enhances tolerance of Arabidopsis to high salt and drought stresses. Plant Growth Regul 83(2):265–276

    Article  CAS  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    Article  CAS  Google Scholar 

  • Zhang L, Wu M, Yu D, Teng Y, Wei T, Chen C, Song W (2018) Identification of glutathione peroxidase (GPX) gene family in Rhodiola crenulata and gene expression analysis under stress conditions. Int J Mol Sci 19:3329

    Article  Google Scholar 

  • Zhang L, Wu M, Teng Y, Jia S, Yu D, Wei T, Chen C, Song W (2019) Overexpression of the Glutathione Peroxidase 5 (RcGPX5) gene from Rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Front Plant Sci 9:1950

    Article  Google Scholar 

  • Zhou Y, Hu L, Ye S, Jiang L, Liu S (2018a) Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. Biotech 8:159

    Google Scholar 

  • Zhou Y, Li J, Wang J, Yang W, Yang Y (2018b) Identification and characterization of the Glutathione Peroxidase (GPX) gene family in watermelon and its expression under various abiotic stresses. Agronomy 8:206

    Article  CAS  Google Scholar 

  • Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y (2014) Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol 14:93

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, grant number 31670335 and 31770363, Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission (No. KLEEMA202106), and the Ministry of Education of China through 111 and "Double First-Class" projects, grant number B08044 and Yldxxk201819.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FG and YZ; Formal analysis, YW, XS, SC and YG; Funding acquisition, FG and YZ; Investigation, YW, FG and JW; Methodology, XS; Visualization, XS; Writing—original draft, SC, YW and FG; Writing—review & editing, FG and YZ.

Corresponding authors

Correspondence to Fei Gao or Yijun Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Nicola Busatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2641 KB)

Supplementary file2 (XLSX 19 KB)

Table S4. Ka, Ks, and KaKs calculation of the paralogous gene pairs in thee collinear blocks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cao, S., Sui, X. et al. Genome-Wide Characterization, Evolution, and Expression Analysis of the Ascorbate Peroxidase and Glutathione Peroxidase Gene Families in Response to Cold and Osmotic Stress in Ammopiptanthus nanus. J Plant Growth Regul 42, 502–522 (2023). https://doi.org/10.1007/s00344-021-10570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10570-5

Keywords

Navigation