Skip to main content

Advertisement

Log in

Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Heavy metal pollution is of increasing global concern as it adversely impacts different spheres including pedosphere, hydrosphere, biosphere, and humansphere. Cadmium (Cd) contamination of agriculture soil has become a thoughtful challenge across the globe due to uncontrolled anthropogenic activities, limiting agricultural productivity and disturbing eco-environment sustainability. Sustainable mitigation strategies are, therefore, required for effective Cd decontamination. Biostimulation is a promising method to improve and stimulate life processes of plants in general and oilseed crops in particular, without posing threats to eco-environment sustainability and safer food production. Melatonin (N-acetyl-5-methoxytryptamine), a recognized pleiotropic molecule, has emerged as a research highlight regarding its role as an effective natural plant growth promoter, a broad spectrum antioxidant, and more specifically an efficient biostimulator to improve Cd-induced tolerance of plants for phytoremediation purposes and simultaneous biofuel production. This review provides a novel insight to understand the multifunctional role of melatonin in improving Cd phytoremediation capacity together with reducing phytotoxicity in oilseed crops, which was not previously assessed. Among oilseed crops, Brassicaceae spp. have unique stress adaptive mechanisms with exceptionally high Cd accumulating capabilities, apart from the diverse agri-horticultural importance. Interestingly, the discovery of dynamic approaches regarding melatonin application helped to better understand the basic mechanisms involved in melatonin-mediated responses against Cd stress in oilseed crops. Our review will provide a useful basis for the development of alternative strategies to genetically engineer low-Cd-content oilseed crops, with the aim of improving eco-friendly crop production and ensuring food safety. Furthermore, future researches will be supposed to provide more genetic evidences about Cd-induced melatonin regulation in higher plants.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addae C, Piva M, Bednar AJ, Zaman MS (2010) Cadmium and lead bioaccumulation in cabbage plants grown in metal contaminated soils. Adv Sci Technol 4:79–82

    Google Scholar 

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Sarwat M, Bhaet NA, Wani MR, Kazi AG, Tran LSP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE 10:e0114571

  • Ahn HR, Kim YJ, Lim YJ, Duan S, Eom SH, Jung KH (2021) Key genes in the melatonin biosynthesis pathway with circadian rhythm are associated with various abiotic stresses. Plants 10:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajjimaporn A, Botsford T, Garrett SH, Sens MA, Zhou XD, Dunlevy JR, Sens DA, Somji S (2012) ZIP8 expression in human proximal tubule cells, human urothelial cells transformed by Cd+2 and As+3 and in specimens of normal human urothelium and urothelial cancer. Cancer Cell Int 12:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali B, Tao Q, Zhou Y, Gill RA, Ali S, Rafiq MT, Xu L, Zhou W (2013a) 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. Ecotoxicol Environ Saf 92:271–280

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013b) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Adv Bot 2014:e815769

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2006) The physiological function of melatonin in plants. Plant Signal Behav 1:89–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007a) Inhibition of ACC oxidase activity by melatonin and indole-3-acetic acid in etiolated lupin hypocotyls. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in plant ethylene research. Springer, Dordrecht, pp 101–103

    Chapter  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007b) Melatonin in plants: more studies are necessary. Plant Signal Behav 2:381–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007c) Melatonin promotes adventitious-and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19:789–797

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2017) Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin. Acta Physiol Plant 39:127

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018a) Melatonin and its relationship to plant hormones. Ann Bot 121:195–207

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018b) The multi-regulatory properties of melatonin in plants. In: Ramakrishna A, Roshchina VV (eds) Neurotransmitters in plants: perspectives and applications. CRC Press, Taylor & Francis Group, Florida, pp 71–101

    Chapter  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019a) Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res 2:152–168

    Article  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019b) Melatonin as a chemical substance or as phytomelatonin rich-extracts for use as plant protector and/or biostimulant in accordance with EC legislation. Agronomy 9:570

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019c) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019d) Role of melatonin to enhance phytoremediation capacity. Appl Sci 9:5293

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2020a) Is phytomelatonin a new plant hormone? Agronomy 10:95

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2020b) Melatonin in flowering, fruit set and fruit ripening. Plant Reprod 33:77–87

    Article  CAS  PubMed  Google Scholar 

  • Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437

    Article  CAS  PubMed  Google Scholar 

  • Bandurski RS, Cohen JD, Slovin JP, Reinecke DM (1995) Auxin biosynthesis and metabolism. In: Davies P (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 39–65

    Chapter  Google Scholar 

  • Belimov A, Hontzeas N, Safronova V, Demchinskaya S, Piluzza G, Bullitta S, Glick B (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bose SK, Prianka H (2020) Melatonin plays multifunctional role in horticultural crops against environmental stresses: a review. Environ Exp Bot 176:104063

    Article  CAS  Google Scholar 

  • Bundschuh J, Maity JP, Mushtaq S, Vithanage M, Seneweera S, Schneider J, Bhattacharya P, Khan NI, Hamawand I, Guilherme LR (2017) Medical geology in the framework of the sustainable development goals. Sci Total Environ 581:87–104

    Article  PubMed  CAS  Google Scholar 

  • Buttar ZA, Wu SN, Arnao MB, Wang C, Ullah I, Wang C (2020) Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809

    Article  CAS  PubMed Central  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Back K (2014a) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in A rabidopsis. J Pineal Res 57:219–227

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Park S, Back K (2014b) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Park S, Lee HY, Kim YS, Back K (2014c) Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. J Pineal Res 56:275–282

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Choi GH, Lee HY, Back K (2015a) Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice. J Exp Bot 66:6917–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byeon Y, Lee HY, Hwang OJ, Lee HJ, Lee K, Back K (2015b) Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J Pineal Res 58:470–478

    Article  CAS  PubMed  Google Scholar 

  • Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62:e12387

    Article  CAS  Google Scholar 

  • Chen Q, Qi W-b, Reiter RJ, Wei W, Wang B-m (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20:1040

    Article  CAS  PubMed Central  Google Scholar 

  • Debnath B, Li M, Liu S, Pan T, Ma C, Qiu D (2020) Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato. Ecotoxicol Environ Saf 200:110720

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Wen L, Chi X (2010) Cadmium hazards to human health and the prevention and treatment research. Nation Med Front China 5:4–5

    Google Scholar 

  • Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res 67:35–49

    Article  Google Scholar 

  • Dubbels R, Reiter R, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara H, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Xie Y, Zhang Z, Chen L (2018) Melatonin: a multifunctional factor in plants. Int J Mol Sci 19:1528

    Article  PubMed Central  CAS  Google Scholar 

  • Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978

    Article  CAS  PubMed  Google Scholar 

  • Fusco N, Micheletto L, DalCorso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    Article  CAS  PubMed  Google Scholar 

  • Gall JE, Rajakaruna N (2013) The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In: Lang M (ed) Brassicaceae: characterization, functional genomics and health benefits. Nova Science, New York, pp 121–148

    Google Scholar 

  • Gu Q, Chen Z, Yu X, Cui W, Pan J, Zhao G, Xu S, Wang R, Shen W (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci 261:28–37

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R (2014) Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. J Exp Bot 66:627–646

    Article  PubMed  CAS  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J (2019) Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L. J Agric Food Chem 67:10563–10576

    Article  CAS  PubMed  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani KR, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627

    CAS  PubMed  Google Scholar 

  • Hayat K, Bundschuh J, Jan F, Menhas S, Hayat S, Haq F, Shah MA, Chaudhary HJ, Ullah A, Zhang D (2020a) Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Crit Rev Environ Sci Technol 50:1085–1115

    Article  CAS  Google Scholar 

  • Hayat K, Menhas S, Bundschuh J, Zhou P, Niazi NK, Amna HA, Hayat S, Ali H, Wang J (2020b) Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. Int J Phytoremediat 22:1–13

    Article  CAS  Google Scholar 

  • Hayat K, Zhou Y, Menhas S, Bundschuh J, Hayat S, Ullah A, Wang J, Chen X, Zhang D, Zhou P (2020c) Pennisetum giganteum: an emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. Environ Pollut 265:114876

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ruiz J, Arnao MB (2018) Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy 8:33

    Article  CAS  Google Scholar 

  • Hernandez-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  PubMed  CAS  Google Scholar 

  • Janas KM, Posmyk MM (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

    Article  CAS  Google Scholar 

  • Janicka RM, Kabała K, Burzyński M (2012) Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. J Exp Bot 63:4133–4142

    Article  CAS  Google Scholar 

  • Kalefetoğlu T, Ekmekci Y (2005) The effects of drought on plants and tolerance mechanisms: review. Gazi Univ J Sci 18:723–740

    Google Scholar 

  • Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65:e12526

    Article  PubMed  CAS  Google Scholar 

  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638

  • Kretsinger RH, Uversky VN, Permyakov EA (2013) Encyclopedia of metalloproteins. Springer, New York, pp 1–2574

    Google Scholar 

  • Lee HY, Back K (2017a) Cadmium disrupts subcellular organelles, including chloroplasts, resulting in melatonin induction in plants. Molecules 22:1791

    Article  PubMed Central  CAS  Google Scholar 

  • Lee K, Back K (2017b) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62:e12392

    Article  CAS  Google Scholar 

  • Lee K, Choi GH, Back K (2017) Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. J Pineal Res 63:e12441

    Article  CAS  Google Scholar 

  • Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J (2016) Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61:291–302

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu J, Zhu T, Zhao C, Li L, Chen M (2019) The role of melatonin in salt stress responses. Int J Mol Sci 20:1735

    Article  CAS  PubMed Central  Google Scholar 

  • Lin L, Li J, Chen F, Liao M, Tang Y, Liang D, Xia H, Lai Y, Wang X, Chen C (2018) Effects of melatonin on the growth and cadmium characteristics of Cyphomandra betacea seedlings. Environ Monit Assess 190:119

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liang J, Li K, Zhang Z, Yu B, Lu X, Yang J, Zhu Q (2003) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Huang Y, Luo Z, Huang Y, Bao Q, Wang P, Yuan B, Li W (2016) Effects of exogenous melatonin on germination of rice seeds under Cd stresses. J Agro-Environ Sci 35:1034–1041

    CAS  Google Scholar 

  • Liu SX, Huang YZ, Luo ZJ, Huang YC, Yang XW (2017) Effects of exogenous melatonin on accumulation and chemical form of Cd in rice. J Appl Ecol 28:1588

    Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  PubMed  Google Scholar 

  • Ma CY, Cai DJ, Yan H (2013) Soil Cd pollution and research progress of treatment techniques. Henan Chem Ind 30:17–22

    CAS  Google Scholar 

  • Madigan AP, Egidi E, Bedon F, Franks AE, Plummer KM (2019) Bacterial and fungal communities are differentially modified by melatonin in agricultural soils under abiotic stress. Front Microbiol 10:2616

    Article  PubMed  PubMed Central  Google Scholar 

  • Mailer RJ (2016) Oilseeds: overview. In: Wrigley C, Corke H, Seetharaman K, Faubion J (eds) Encyclopedia of food grains: the world of food grains, vol 1. Academic Press, Oxford, UK, pp 221–227

    Chapter  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Mehmood S, Saeed DA, Rizwan M, Khan MN, Aziz O, Bashir S, Ibrahim M, Ditta A, Akmal M, Mumtaz MA (2018) Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol Biochem 132:345–355

    Article  CAS  PubMed  Google Scholar 

  • Meng JF, Xu TF, Wang ZZ, Fang YL, Xi ZM, Zhang ZW (2014) The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res 57:200–212

    Article  CAS  PubMed  Google Scholar 

  • Mir AR, Faizan M, Bajguz A, Sami F, Siddiqui H, Hayat S (2020) Occurrence and biosynthesis of melatonin and its exogenous effect on plants. Acta Soc Bot Pol 89:1–23

    Article  CAS  Google Scholar 

  • Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16:17975–17998

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S (2020a) Melatonin and its protective role against biotic stress impacts on plants. Biomolecules 10:54

    Article  CAS  Google Scholar 

  • Moustafa-Farag M, Mahmoud A, Arnao MB, Sheteiwy MS, Dafea M, Soltan M, Elkelish A, Hasanuzzaman M, Ai S (2020b) Melatonin-induced water stress tolerance in plants: recent advances. Antioxidants 9:809

    Article  CAS  PubMed Central  Google Scholar 

  • Nabaei M, Amooaghaie R (2019) Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. Environ Sci Pollut Res 27:6981–6994

    Article  CAS  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

  • Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, Niu M, Hameed S (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci 6:1230

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Wang Q, Shah FA, Liu W, Wang D, Huang S, Fu S, Wu L (2018) Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23:799

    Article  PubMed Central  CAS  Google Scholar 

  • Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H (2009) Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J Pineal Res 46:373–382

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Strzalka K (2013) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer Science & Business Media, Dordrecht, pp 1–431

    Google Scholar 

  • Pulford I, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Burkhardt S, Manchester LC (2001) Melatonin in plants. Nutr Rev 59:286–290

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Mondal S (2020) Brassicaceae plants response and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M (ed) The plant family Brassicaceae. Springer, Singapore, pp 363–377

  • Rubio M, Escrig I, Martinez-Cortina C, Lopez-Benet F, Sanz A (1994) Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul 14:151–157

    Article  CAS  Google Scholar 

  • Sabir A, Naveed M, Bashir MA, Hussain A, Mustafa A, Zahir ZA, Kamran M, Ditta A, Núñez-Delgado A, Saeed Q (2020) Cadmium mediated phytotoxic impacts in Brassica napus: managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J Environ Manag 265:110522

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K (2020) Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. Plant Biol 22:679–690

    Article  CAS  PubMed  Google Scholar 

  • Shah AA, Ahmed S, Ali A, Yasin NA (2020) 2-Hydroxymelatonin mitigates cadmium stress in Cucumis sativus seedlings: modulation of antioxidant enzymes and polyamines. Chemosphere 243:125308

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z (2014) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66:681–694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stroiński A, Giżewska K, Zielezińska M (2013) Abscisic acid is required in transduction of cadmium signal to potato roots. Biol Plant 57:121–127

    Article  CAS  Google Scholar 

  • Tal O, Haim A, Harel O, Gerchman Y (2011) Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. J Exp Bot 62:1903–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DX, Reiter RJ (2020) An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J Exp Bot 71:4677–4689

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Helton P, Reiter RJ (2007a) Phytoremediative capacity of plants enriched with melatonin. Plant Signal Behav 2:514–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007b) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Lin L, Xie Y, Liu J, Sun G, Li H, Liao M, Wang Z, Liang D, Xia H (2018) Melatonin affects the growth and cadmium accumulation of Malachium aquaticum and Galinsoga parviflora. Int J Phytoremediat 20:295–300

    Article  CAS  Google Scholar 

  • Tang Y, Li J, Li H (2015) Effects of exogenous melatonin on photosynthetic characteristics of eggplant (Solanum melongena L.) under cadmium stress. In: Jiang ZY (ed) Proceedings of the 2015 6th international conference on manufacturing science and engineering, Atlantis Press, Netherlands, pp 580–583

  • Tiwari RK, Lal MK, Naga KC, Kumar R, Chourasia KN, Subhash S, Kumar D, Sharma S (2020) Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci Hortic 272:109592

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Umapathi M, Kalarani M, Bharathi MU, Kalaiselvi P (2018a) Cadmium induced stress mitigation in tomato by exogenous melatonin. Int J Pure Appl Biosci 6:903–909

    Article  Google Scholar 

  • Umapathi M, Kalarani M, Srinivasan S (2018b) Optimization of melatonin to mitigate cadmium stress at seedling level in tomato. Madras Agric J 105:471–475

    Google Scholar 

  • Wang Y, Ji J, Bu H, Zhao Y, Xu Y, Johnson CH, Kolár J (2009) Genetic transformation of Nicotiana tabacum L. by Agrobacterium tumefaciens carrying genes in the melatonin biosynthesis pathway and the enhancement of antioxidative capability in transgenic plants. Chin J Biotechnol 25:1014–1021

    CAS  Google Scholar 

  • Wang P, Chen H, Kopittke PM, Zhao FJ (2019) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen X, Chi Y, Chu S, Hayat K, Zhi Y, Hayat S, Terziev D, Zhang D, Zhou P (2020) Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment. Ecotoxicol Environ Saf 189:109997

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zeng H, Hu W, Chen L, He C, Shi H (2016) Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice. Front Plant Sci 7:676

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang G, Lin L, Liao MA, Tang Y, Liang D, Xia H, Wang J, Wang X, Sun G, Zhang H, Zou Y, Ren W (2019) Effects of melatonin on cadmium accumulation in the accumulator plant Perilla frutescens. Chem Ecol 35:553–562

  • Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L (2020) Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 69:e12659

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye T, Yin X, Yu L, Zheng SJ, Cai WJ, Wu Y, Feng YQ (2019) Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry. J Pineal Res 66:e12531

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Lv Y, Shi Y, Li T, Chen Y, Zhao D, Zhao Z (2018) The role of phytomelatonin and related metabolites in response to stress. Molecules 23:1887

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zeng B, Mao Y, Kong X, Wang X, Yang Y, Zhang J, Xu J, Rengel Z, Chen Q (2017) Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct Plant Biol 44:961–968

    Article  CAS  PubMed  Google Scholar 

  • Zhao YQ, Zhang ZW, Chen YE, Ding CB, Yuan S, Reiter RJ, Yuan M (2021) Melatonin: a potential agent in delaying leaf senescence. Crit Rev Plant Sci 40:1–22

Download references

Acknowledgements

This work was supported by Shanghai Agriculture Applied Technology Development Program, China (Grant No. T20180413), National Key Research and Development Program of China (Grant No. 2016YFD0800807), Shanghai Science and Technology Innovation Action Project (Grant Nos. 20392001000, 20dz1204804), and Project of Key Laboratory of Urban Agriculture in North China in 2020 (Grant No. KF2020012).

Author information

Authors and Affiliations

Authors

Contributions

SM: Data curation and Writing—original draft. XY: Conceptualization. KH, TA, JB, MBA, and YZ: Writing—review & editing. PZ: Conceptualization and Funding acquisition.

Corresponding author

Correspondence to Pei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menhas, S., Yang, X., Hayat, K. et al. Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. J Plant Growth Regul 41, 922–935 (2022). https://doi.org/10.1007/s00344-021-10349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10349-8

Keywords

Navigation