Skip to main content
Log in

Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Brassica genus includes several agronomically important brassica species, and their yield performance is being affected by salt stress. Salt stress considerably reduces Brassica species growth and development by disrupting photosynthesis, leaf gas exchange, vegetative, and reproductive growth. Nonetheless, Brassica exhibits numerous salt stress tolerating mechanisms, and by targeting such potential traits, further improvement in overall salt stress tolerance in brassica can be achieved. Brassica can tolerate salt stress by accumulating organic and inorganic osmolytes, efficient Na+ exclusion, and better K+ retention ability. Recent studies have also proposed a strong role of ROS as a signaling element to enhance salt stress tolerance in Brassica. Thus, the response and tolerance mechanisms are profiled, and the possible management options to mitigate the severity of salt stress are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd_Allah, Hashem EFA, Alqarawi AA, Bahkali AH, Alwhibi MS, (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22:274–283

  • Adabnejad H, Kavousi HR, Hamidi H, Tavassolian I (2015) Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses. Mol Biol Res Commun 4:133

  • Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol 14:113. https://doi.org/10.1186/1471-2229-14-113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adetunji AE, Varghese B, Pammenter NW (2020) Effects of inorganic salt solutions on vigour, viability, oxidative metabolism and germination enzymes in aged cabbage and lettuce seeds. Plants 9:1164

    CAS  PubMed Central  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123. https://doi.org/10.1007/s12033-012-9538-3

    Article  CAS  PubMed  Google Scholar 

  • Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS (2018) New breeding technique “genome editing” for crop improvement: applications, potentials and challenges. 3 Biotech 8:336 doi:https://doi.org/10.1007/s13205-018-1355-3

  • Ahmad B, Jalal T (2009) Effect of salinity stress on germination and seedling properties in Canola cultivars (Brassica napus L.) Notulae Botanicae. Horti Agrobotanici Cluj-Napoca. doi:https://doi.org/10.15835/nbha3723299

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588. https://doi.org/10.1080/03650340903164231

    Article  CAS  Google Scholar 

  • Ahmad P, Hakeem KUR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Ahmad W et al (2019) Supplemental potassium mediates antioxidant metabolism, physiological processes, and osmoregulation to confer salt stress tolerance in cabbage (Brassica oleracea L.). Hortic Environ Biotechnol 60:853–869. https://doi.org/10.1007/s13580-019-00172-2

    Article  CAS  Google Scholar 

  • Akbari GA, Hojati M, Modarres-Sanavy SAM, Ghanati F (2011) Exogenously applied hexaconazole ameliorates salinity stress by inducing an antioxidant defense system in Brassica napus L. plants. Pestic Biochem Physiol 100:244–250. https://doi.org/10.1016/j.pestbp.2011.04.008

    Article  CAS  Google Scholar 

  • Alagoz SM, Toorchi M (2018) An investigation of some key morpho-physiological attributes and leaf proteome profile in canola (Brassica napus L.) under salinity stress. Pak J Bot 50:847–852

    CAS  Google Scholar 

  • Alam I, Cui D-L, Batool K, Yang Y-Q, Lu Y-H (2019) Comprehensive genomic survey, characterization and expression analysis of the HECT gene family in Brassica rapa L. and Brassica oleracea L. Genes 10:400

  • Anjum SA et al (2015) Exogenously applied methyl jasmonate improves the drought tolerance in wheat imposed at early and late developmental stages. Acta Physiol Plant 38:25. https://doi.org/10.1007/s11738-015-2047-9

    Article  CAS  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    CAS  Google Scholar 

  • Ashraf M, Nazir N, McNeilly T (2001) Comparative salt tolerance of amphidiploid and diploid Brassica species. Plant Science 160

  • Banaei-Asl F, Bandehagh A, Uliaei ED, Farajzadeh D, Sakata K, Mustafa G, Komatsu S (2015) Proteomic analysis of canola root inoculated with 2 bacteria under salt stress. J Proteomics 21:88–111

    Google Scholar 

  • Banaei-Asl F, Farajzadeh D, Bandehagh A, Komatsu S (2016) Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Biochim Biophys Acta. https://doi.org/10.1016/j.bbapap.2016.04.013

    Article  PubMed  Google Scholar 

  • Bargaz A et al (2016) Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their p-efficiency. J Agron Crop Sci 202:497–507. https://doi.org/10.1111/jac.12181

    Article  CAS  Google Scholar 

  • Beacham AM, Hand P, Pink DA, Monaghan JM (2017) Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress. J Sci Food Agric 97:5271–5277. https://doi.org/10.1002/jsfa.8411

    Article  CAS  PubMed  Google Scholar 

  • Begum N et al (2014) Influence of seed priming with ZnSO4 and CuSO4 on germination and seedling growth of Brassica rapa under NaCl stress. Middle-East J Sci Res 22:879–885

    Google Scholar 

  • Bhaskaran S, Savithramma D (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62:5561–5570

    CAS  PubMed  Google Scholar 

  • Bhattacharya RC, Maheshwari M, Dineshkumar V, Kirti PB, Bhat SR, Chopra VL (2004) Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci Hortic 100:215–227

  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2014) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot 115:481–494. https://doi.org/10.1093/aob/mcu219

    Article  PubMed  PubMed Central  Google Scholar 

  • Braatz J, Harloff H-J, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid Oilseed Rape (Brassica napus. Plant Physiol 174:935–942. https://doi.org/10.1104/pp.17.00426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bybordi A, Tabatabaci SJ, Ahmedov A (2010) The influence of salinity stress on antioxidant activity in canola cultivars (Brassica napus L.). J Food Agric Environ 8:122–127

    CAS  Google Scholar 

  • Carpýcý E, Celýk N, Bayram G (2009) Effects of salt stress on germination of some maize (Zea mays L.) cultivars. Afr J Biotechnol 8

  • Chakraborty K, Bose J, Shabala L, Eyles A, Shabala S (2016a) Evaluating relative contribution of osmo-and tissue-tolerance mechanisms towards salinity stress tolerance in three Brassica species. Physiol Plant. https://doi.org/10.1111/ppl.12447

    Article  PubMed  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016b) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty K, Sairam RK, Bhaduri D (2015) Effects of different levels of soil salinity on yield attributes, accumulation of nitrogen, and micronutrients in Brassica Spp. J Plant Nutr. https://doi.org/10.1080/01904167.2015.1109105

    Article  Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya RC (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101

    CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell Environ 34:1–20

    Google Scholar 

  • Cheng C, Zhong Y, Cai Z, Su R, Li C (2019) Genome-wide identification and gene expression analysis of ABA receptor family genes in Brassica juncea var. tumida. Genes 10:470

  • Chikkaputtaiah C, Debbarma J, Baruah I, Havlickova L, Deka Boruah HP, Curn V (2017) Molecular genetics and functional genomics of abiotic stress-responsive genes in oilseed rape (Brassica napus L.): a review of recent advances and future. Plant Biotechnol Rep 11:365–384. https://doi.org/10.1007/s11816-017-0458-3

    Article  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Google Scholar 

  • Damaris RN, Lin Z, Yang P, He D (2019) The rice alpha-amylase, conserved regulator of seed maturation and germination. Int J Mol Sci 20:450

    PubMed Central  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Pinto M, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    PubMed  Google Scholar 

  • Demidchik V (2018) ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature. Int J Mol Sci 19:1263

    PubMed Central  Google Scholar 

  • Demidchik V et al (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479. https://doi.org/10.1242/jcs.064352

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325. https://doi.org/10.1104/pp.114.4.1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (2001) Characteristics of non-specific permeability and H+-ATPase inhibition induced in the plasma membrane of Nitella flexilis by excessive Cu2+. Planta 212:583–590. https://doi.org/10.1007/s004250000422

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Chashmi NA (2008) The effects of foliar application of Ascorbic Acid (Vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of Canola (Brassica napus L.) under conditions of salt stress. J Agron Crop Sci 194:206–213. https://doi.org/10.1111/j.1439-037X.2008.00301.x

    Article  CAS  Google Scholar 

  • Efimova MV, Savchuk AL, Hasan JAK, Litvinovskaya RP, Khripach VA, Kholodova VP, Kuznetsov VV (2014) Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids. Russ J Plant Physiol 61:733–743

    CAS  Google Scholar 

  • Falcinelli B, Sileoni V, Marconi O, Perretti G, Quinet M, Lutts S, Benincasa P (2017) Germination under moderate salinity increases phenolic content and antioxidant activity in rapeseed (Brassica napus var oleifera Del.) sprouts. Molecules 22:1377

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284

    CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. Salt Stress in Plants. Springer, New York, pp 301–354

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    CAS  PubMed  Google Scholar 

  • Hassini I, Martinez-Ballesta MC, Boughanmi N, Moreno DA, Carvajal M (2017) Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci Hortic 226:141–151. https://doi.org/10.1016/j.scienta.2017.08.030

    Article  CAS  Google Scholar 

  • Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A (2012) Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol Biochem 53:61–68

    CAS  PubMed  Google Scholar 

  • Hussain S, Khaliq A, Tanveer M, Matloob A, Hussain HA (2018) Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol Plant 40:68–75

    Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46. https://doi.org/10.1016/j.jplph.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85. https://doi.org/10.1016/j.envexpbot.2010.06.002

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jalali-e-Emam SMS, Alizadeh B, Zaefizadeh M, Zakarya RA, Khayatnezhad M (2011) Superoxide dismutase (SOD) activity in NaCl stress in salt-sensitive and salt-tolerance genotypes of Colza (Brassica napus L.). Middle East J Sci Res 7:7–11

    CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    CAS  PubMed  Google Scholar 

  • Jin L, Ouyang N, Huang Y, Liu C, Ruan Y (2019) Genome-wide analysis of sulfotransferase genes and their responses to abiotic stresses in Chinese cabbage (Brassica rapa L.) PloS ONE 14:e0221422

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Google Scholar 

  • Khan NA, Nazar R, Anjum NA (2009) Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic 1223(3):455–460

  • Kim JA et al (2016) Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Plant Cell Rep. https://doi.org/10.1007/s00299-016-2008-9

    Article  PubMed  Google Scholar 

  • Kumar M, Kumar R, Jain V, Jain S (2018) Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L. Biocatal Agric Biotechnol 13:12–19. https://doi.org/10.1016/j.bcab.2017.11.003

    Article  Google Scholar 

  • Laha SD, Dutta S, Schäffner AR, Das M (2020) Gene duplication and stress genomics in Brassicas: current understanding and future prospects. J Plant Physiol 153293

  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Google Scholar 

  • Lawrenson T et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. https://doi.org/10.1186/s13059-015-0826-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GW, Lee KJ, Chae JC (2016) Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. Pekinensis. Protoplasma 253:655–661

    CAS  PubMed  Google Scholar 

  • Lei P, Xu Z, Liang J, Luo X, Zhang Y, Feng X, Xu H (2016) Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. Plant Growth Regul 78:233–241

    CAS  Google Scholar 

  • Li S et al (2017) Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli. Sci Rep 7:41397. https://doi.org/10.1038/srep41397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2019) Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01361

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930. https://doi.org/10.1038/ncomms4930

    Article  CAS  PubMed  Google Scholar 

  • Lu H et al (2015) Subfamily-specific fluorescent probes for cysteine proteases display dynamic protease activities during seed germination. Plant Physiol 168:1462–1475. https://doi.org/10.1104/pp.114.254466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mer RK, Prajith PK, H. Pandya D, Pandey AN (2000) Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. J Agron Crop Sci 185:209–217

  • Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Very A-A (2011) Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479

    CAS  PubMed  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    CAS  PubMed  Google Scholar 

  • Mohammadreza S, Amin B, Forogh A, Hossin M, Sorayya S (2012) Response of Brassica napus L. grains to the interactive effect of salinity and salicylic acid. J Stress Physiol Biochem 8:159–166

    Google Scholar 

  • Mondal TK, Ganie SA, Debnath AB (2015) Identification of novel and conserved miRNAs from extreme halophyte, Oryza coarctata, a wild relative of rice. PLoS ONE 10:e0140675

    PubMed  PubMed Central  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R, James RA, Launchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    PubMed  Google Scholar 

  • Naeem MS et al (2012) 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol Biochem 57:84–92

    CAS  PubMed  Google Scholar 

  • Nawaz J, Hussain M, Jabbar A, Nadeem GA, Sajid M, Subtain MU, Shabbir I (2013) Seed priming a technique. Int J Agric Crop Sci 6:1373

    Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10:e1003751

    PubMed  PubMed Central  Google Scholar 

  • Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R (2011) The effects of different levels of salinity on proline and A, B chlorophylls in canola American-Eurasian. J Agric Environ Sci 10:70–74

    Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17:343–357. https://doi.org/10.2174/1389202917666160331202517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh D-H, Dassanayake M (2018) Landscape of gene transposition–duplication within the Brassicaceae family. DNA Res 26:21–36. https://doi.org/10.1093/dnares/dsy035

    Article  CAS  PubMed Central  Google Scholar 

  • Omidi H, Khazaei F, Alvanagh SH, Heidari-Sharifabad H (2009) Improvement of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stresses. Plant Ecophysiol 3:151–158

    Google Scholar 

  • Oomen RJ, Benito B, Sentenac H, Rodríguez-Navarro A, Talón M, Véry AA, Domingo C (2012) HKT2; 2/1, a K+-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J 71:750–762

    CAS  PubMed  Google Scholar 

  • Pace R, Benincasa P, Ghanem ME, Quinet M, Lutts S (2012) Germination of untreated and primed seeds in rapeseed (Brassica napus var Oleifera Del.) under salinity and low matric potential. Expl Agric 48:238–251

    Google Scholar 

  • Park B-J, Liu ZC, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558

    CAS  Google Scholar 

  • Park J-I et al (2014) Identification and characterization of LIM gene family in Brassica rapa. BMC Genomics 15:641. https://doi.org/10.1186/1471-2164-15-641

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei Z-M et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734. https://doi.org/10.1038/35021067

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    PubMed  Google Scholar 

  • Percey WJ et al (2016) Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiol Biochem 109:346–354. https://doi.org/10.1016/j.plaphy.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int. https://doi.org/10.1155/2013/654120

    Article  PubMed  Google Scholar 

  • Pi B, He X, Ruan Y, Jang J-C, Huang Y (2018) Genome-wide analysis and stress-responsive expression of CCCH zinc finger family genes in Brassica rapa. BMC Plant Biol 18:1–15

    Google Scholar 

  • Pitann B, Schubert S, Mühling KH (2009) Decline in leaf growth under salt stress is due to an inhibition of H+-pumping activity and increase in apoplastic pH of maize leaves. J Plant Nutr Soil Sci 172(4):535–543

    CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    CAS  PubMed  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6

  • Purty RS, Kumar G, Singla-Pareek SL, Pareek A (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qadir M et al (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295. https://doi.org/10.1111/1477-8947.12054

    Article  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breeding 19:137–151

    CAS  Google Scholar 

  • Rakow G (2004) Species origin and economic importance of Brassica. In: Brassica. Springer, pp 3–11

  • Rameeh V (2013) Effect of salinity stress on yield, component characters and nutrient compositions in rapeseed (Brassica napus L.) genotypes. Agric Trop Subtrop 46:58–63

    Google Scholar 

  • Ranjit SL, Manish P, Penna S (2016) Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.). Protoplasma 253:101–110

    CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023. https://doi.org/10.1093/jxb/erj108

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    PubMed  PubMed Central  Google Scholar 

  • Ruiz J, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    CAS  PubMed  Google Scholar 

  • Saha G, Park J-I, Kayum MA, Nou I-S (2016) A genome-wide analysis reveals stress and hormone responsive patterns of TIFY family genes in Brassica rapa. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00936

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarwat M et al. (2016) Mitigation of NaCl stress by Arbuscular Mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica juncea L.). Front Plant Sci 7:869

  • Selvakumar G, Kim K, Hu S, Sa T (2013) Effect of salinity on plants and the role of arbuscular Mycorrhizal fungi and plant growth-promoting Rhizobacteria in alleviation of salt stress. Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 115–144

    Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–711

    CAS  PubMed  Google Scholar 

  • Shabala S (2017) Signalling by potassium: another second messenger to add to the list? J Exp Bot 68:4003–4007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Cuin T (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–187

    CAS  Google Scholar 

  • Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. Ion channels and plant stress responses. Springer, Berlin, pp 87–110

    Google Scholar 

  • Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. Biomol Concepts 2:407–419

    CAS  PubMed  Google Scholar 

  • Shahbazi E, Arzani A, Saeidi G (2011) Effects of NaCl treatments on seed germination and antioxidant activity of canola (Brassica napus L.) cultivars. Bangladesh J Bot 40:67–73

    Google Scholar 

  • Shahzad B, Fahad S, Tanveer M, Saud S, Khan IA (2019) Plant responses and tolerance to salt stress Approaches for enhancing abiotic stress tolerance in plants. Taylor & Francis, New York, pp 61–77

    Google Scholar 

  • Sharma A et al (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

    CAS  PubMed Central  Google Scholar 

  • Shen C, Yuan J (2020) Genome-wide investigation and expression analysis of K+-transport-related gene families in Chinese cabbage (Brassica rapa ssp. pekinensis). Biochem Genet. https://doi.org/10.1007/s10528-020-10004-z

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi HZ, Ishitani M, Kim CS, Zhu JK The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. In: Proceedings of the National Academy of Sciences of the United States of America, 2000. pp 6896–6901

  • Shi HZ, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    CAS  PubMed  Google Scholar 

  • Siddiqui MH, Khan MN, Mohammad F, Khan MMA (2008) Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci 194:214–224

    CAS  Google Scholar 

  • Singh H, Jassal RK, Kang J, Sandhu S, Kang H, Grewal K (2015) Seed priming techniques in field crops—a review. Agricultural Reviews 36:251–264

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32:1135–1144

    Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    CAS  Google Scholar 

  • Tanveer M, Ahmed HAI (2020) ROS signalling in modulating salinity stress tolerance in plants. Salt and drought stress tolerance in plants. Springer, New York, pp 299–314

    Google Scholar 

  • Tanveer M, Anjum SA, Bajwa AA, Zahid H (2013) Improving maize growth and development in relation to soil applied elemental. Asian J Agric Biol 1:200–207

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. Salinity responses and tolerance in plants, vol 1. Springer, New York, pp 213–234

    Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res 24:16531–16535

    CAS  Google Scholar 

  • Tanveer M, Shaukat R, Ali M, Pirdad F (2020) An overview of salinity tolerance mechanism in plants. Salt and drought stress tolerance in plants. Springer, New York, pp 1–16

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Tian Y et al (2014) Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC Plant Biol 14:226. https://doi.org/10.1186/s12870-014-0226-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umar S, Diva I, Anjum NA, Iqbal M, Ahmad I, Pereira E (2011) Potassium-induced alleviation of salinity stress in Brassica campestris L. Cent Eur J Biol 6:1054–1063. https://doi.org/10.2478/s11535-011-0065-1

    Article  CAS  Google Scholar 

  • Valetti L, Iriarte L, Fabra A (2016) Effect of previous cropping of rapeseed (Brassica napus L.) on soybean (Glycine max) root mycorrhization, nodulation, and plant growth. Eur J Soil Biol 76:103–106. https://doi.org/10.1016/j.ejsobi.2016.08.005

    Article  Google Scholar 

  • Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61:18–23. https://doi.org/10.1016/j.plaphy.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Lakhanpal N, Singh K (2019) Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC genomics 20:1–18

    Google Scholar 

  • Wang LJ et al (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. https://doi.org/10.1186/1471-2229-10-34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. Curr Genomics 14:157–165. https://doi.org/10.2174/1389202911314030001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Xiao D, Zhang C, Hou X (2019) The expanded SWEET gene family following whole genome triplication in Brassica rapa. Genes 10:722

    CAS  PubMed Central  Google Scholar 

  • Wu Q-S, Xia R-X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    CAS  PubMed  Google Scholar 

  • Xu L, Lin Z, Tao Q, Liang M, Zhao G, Yin X, Fu R (2014) Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L. PLoS ONE 9:e111354

    PubMed  PubMed Central  Google Scholar 

  • Xu Z, Lei P, Pang X, Li H, Feng X, Xu H (2017) Exogenous application of poly-γ-glutamic acid enhances stress defense in Brassica napus L. seedlings by inducing cross-talks between Ca2+, H2O2, brassinolide, and jasmonic acid in leaves. Plant Physiol Biochem 118:460–470. https://doi.org/10.1016/j.plaphy.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    CAS  Google Scholar 

  • Yadav D, Ahmed I, Kirti PB (2015) Genome-wide identification and expression profiling of annexins in Brassica rapa and their phylogenetic sequence comparison with B. juncea and A. thaliana annexins. Plant Gene 4:109–124. https://doi.org/10.1016/j.plgene.2015.10.001

    Article  CAS  Google Scholar 

  • Yan M (2016) Hydro-priming increases seed germination and early seedling growth in two cultivars of Napa cabbage (Brassica rapa subsp. pekinensis) grown under salt stress. J Hortic Sci Biotechnol. doi: https://doi.org/10.1080/14620316.2016.1162031

  • Yıldız M, Akçalı N, Terzi H (2015) Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J Plant Physiol 179:90–99

    PubMed  Google Scholar 

  • Yong HY, Wang C, Bancroft I, Li F, Wu X, Kitashiba H, Nishio T (2015) Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta 242:313–326

    CAS  PubMed  Google Scholar 

  • Yousuf PY, Ahmad A, Hemant Ganie A, Aref IM, Iqbal M (2015) Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed Indian mustard (Brassica juncea) plants. Pak J Bot 47:1629–1639

    CAS  Google Scholar 

  • Yuan F et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371. https://doi.org/10.1038/nature13593

    Article  CAS  PubMed  Google Scholar 

  • Yun Li H, Xia Si D (2019) Effect of potassium on uptake and translocation of sodium and potassium in Chinese cabbage under NaCl stress. J Plant Nutr 42:250–260. https://doi.org/10.1080/01904167.2018.1554078

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Varshney P, Ahmad A (2012) Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ Sci Pollut Res 19:8–18

    CAS  Google Scholar 

  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50:1096–1102

    CAS  PubMed  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta BBA 1797:1428–1438

    CAS  PubMed  Google Scholar 

  • Zadeh HM, Naeni MB (2007) Effects of salinity stress on the morphology and yield of two cultivars of canola (Brassica napus L.). J Agron 6:409–414

    Google Scholar 

  • Zeng C-L, Liu L, Xu G-Q (2011) The physiological responses of carnation cut flowers to exogenous nitric oxide. Sci Hortic 127:424–430. https://doi.org/10.1016/j.scienta.2010.10.024

    Article  CAS  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180. https://doi.org/10.1104/pp.111.179671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. In: Proc Natl Acad Sci USA, pp 12832–12836

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73. https://doi.org/10.1270/jsbbs.64.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-M, Liu Z-H, Wen Z-Y, Zhang H-M, Yang F, Guo X-L (2012) The vacuolar Na+–H+ antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa). Funct Plant Biol 39:708–716. https://doi.org/10.1071/FP12095

    Article  CAS  PubMed  Google Scholar 

  • Zuo Q et al. (2019) Carbon and nitrogen assimilation and partitioning in Canola (Brassica napus L.) In Saline Environment Communications in Soil Science and Plant Analysis 50:1700–1709. https://doi.org/10.1080/00103624.2019.1631336

Download references

Acknowledgments

This work was supported by the Key Research and Development Program of Xinjiang province (2018B01006–4)

Author information

Authors and Affiliations

Authors

Contributions

MT conceived the idea; BS and AR equally compiled and wrote information; and MT critically revised the manuscript; and LW. SKP and AA improved the text grammatically and discussed important aspects in the manuscript.

Corresponding author

Correspondence to Mohsin Tanveer.

Ethics declarations

Conflict of interest

All the authors declare that there is no competing interest in this manuscript.

Additional information

Handling editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, B., Rehman, A., Tanveer, M. et al. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. J Plant Growth Regul 41, 781–795 (2022). https://doi.org/10.1007/s00344-021-10338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10338-x

Keywords

Navigation