Skip to main content
Log in

Characterization of a Rapeseed Anthocyanin-More Mutant with Enhanced Resistance to Sclerotinia sclerotiorum

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Anthocyanins are important natural pigments in plants, and they function not only in antioxidation but also in plant stress responses, pollination, and seed propagation. The anthocyanin-more (am) mutant described in our study is a naturally occurring mutant of Brassica napus cultivar Zhongshuang 11. Compared with the wild type (WT), the mutant produced more anthocyanins at the seedling, bolting, and maturity stages, showing purple color in different parts of the plant. The protein expression profiles of the mutant and WT seedling leaves under natural growth conditions were analyzed using proteomics. A total of 32 proteins that exhibited at least 1.5-fold difference in expression between the WT and mutant plants were successfully identified. The proteins were mainly involved in defense/stress/detoxification and photosynthesis. In particular, the defense/stress/detoxification response and anthocyanin synthesis-related proteins were significantly affected in the am mutant. Moreover, we found the am mutant can enhance the resistance to Sclerotinia sclerotiorum compared with the WT. This enhanced disease resistance may result from the increased anthocyanin content, which is also related to antimicrobial activities and inhibiting fungal growth, and the rapid accumulation of reactive oxygen species that are involved in programmed cell death in plants. These results provide a basis for studying the mutant’s molecular mechanism and increase the information available regarding the growth and development of rapeseed under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asem ID, Imotomba RK, Mazumder PB, Laishram JM (2015) Anthocyanin content in the black scented rice (Chakhao): its impact on human health and plant defense. Symbiosis 66:47–54

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bi H, Guo M, Wang J, Qu Y, Du W, Zhang K (2018) Transcriptome analysis reveals anthocyanin acts as a protectant in Begonia semperflorens under low temperature. Acta Physiol Plant 40:10

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Calla B, Vuong T, Radwan O, Hartman GL, Clough SJ (2009) Gene expression profiling soybean stem tissue early response to Sclerotinia sclerotiorum and in silico mapping in relation to resistance markers. Plant Genome 2:149–166

    Article  CAS  Google Scholar 

  • Chen W, Wan S, Shen L, Zhou Y, Huang C, Chu P, Guan R (2018) Histological, physiological, and comparative proteomic analyses provide insights into leaf rolling in Brassica napus. J Proteome Res 17:1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutuli B, Lemanski C, Fourquet A, Lafontan BD, Giard S, Lancrenon S, Meunier A, Pioud-Martigny R, Campana F, Marsiglia H (2010) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Google Scholar 

  • De P-TS, Moreno DA, Garcã-A-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703

    Article  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2010) The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol 3:371–390

    Article  Google Scholar 

  • Duan S, Wang J, Gao C, Jin C, Dong L, Peng D, Du G, Li Y, Chen M (2018) Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana. Plant Sci 268:47–53

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Cui W, Li X, Chen S, Liu G, Shen S (2011) Proteomics analysis of rice seedling responses to ovine saliva. J Plant Physiol 168:500–509

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Grit R, Takayuki T, Fumio M, Kazuki S, Wolf-Rüdiger S (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  CAS  Google Scholar 

  • Hayashi K, Matsumoto S, Tsukazaki H, Kondo T, Kubo N, Hirai M (2010) Mapping of a novel locus regulating anthocyanin pigmentation in Brassica rapa. Breed Sci 60:76–80

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Kharya MD, Gajbhiye A, Sara UVS, Sharma VK (2008) Flavonoids as nutraceuticals. A review. Herba Pol 7:1089–1099

    Google Scholar 

  • Juvany M, Müller M, Munnébosch S (2013) Photo-oxidative stress in emerging and senescing leaves: a mirror image? J Exp Bot 64:3087–3098

    Article  CAS  PubMed  Google Scholar 

  • Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Park SY, Thwe AA, Seo JM, Suzuki T, Kim SJ, Kim JK, Park SU (2013) Metabolomic analysis and differential expression of anthocyanin biosynthetic genes in white- and red-flowered buckwheat cultivars (Fagopyrum esculentum). J Agric Food Chem 61:10525–10533

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gao MJ, Pan HY, Cui DJ, Gruber MY (2010) Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves. J Agric Food Chem 58:1639

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhu L, Yuan G, Heng S, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J (2016) Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L. Mol Genet Genom 291:1–12

    Article  CAS  Google Scholar 

  • Liang Y, Srivastava S, Rahman MH, Strelkov SE, Kav NN (2008) Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J Agric Food Chem 56:1963–1976

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Wu X, Zhao T, Zhao J, Fang L, Ye Z, Mao G, Yang L (2012) In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Res Int 46:76–82

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lv JL (2008) Primary mapping of leaf color gene in Brassica napus. Ph. D. Dissertation (in Chinese), Huazhong Agricultural University

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids–biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food 12:483–508

    Article  CAS  Google Scholar 

  • Raines CA (2010) Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant, Cell Environ 29:331–339

    Article  CAS  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Schaefer H, Rolshausen G (2010) Plants on red alert: do insects pay attention? BioEssays 28:65–71

    Article  Google Scholar 

  • Song TH, Han OK, Yangkil K, Taeil P, Kihun P, Keejong K (2011) Effect of top dressing and harvest time on growth, feed value, and anthocyanin content of colored barley. Korean J Crop Sci 56:159–166

    Article  Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197

    Article  CAS  PubMed  Google Scholar 

  • Thangella PAV, Pasumarti SNBS, Pullakhandam R, Geereddy BR, Daggu MR (2018) Differential expression of leaf proteins in four cultivars of peanut (Arachis hypogaea L.) under water stress. Biotech 8:157

    Google Scholar 

  • Wan L, Zha W, Cheng X, Liu C, Lv L, Liu C, Wang Z, Du B, Chen R, Zhu L, He G (2011) A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. Planta 233:309–323

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang D, Yu S, Jin L, Dan W, Zhang F, Yu Y, Zhao X, Lu G, Su T (2014) Mapping the Br Pur gene for purple leaf color on linkage group A03 of Brassica rapa. Euphytica 199:293–302

    Article  CAS  Google Scholar 

  • Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X (2015) Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol 15:677–689

    Article  CAS  Google Scholar 

  • Wang JL, Tang MQ, Chen S, Zheng XF, Mo HX, Li SJ, Wang Z, Zhu KM, Ding LN, Liu SY (2017) Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnol J 15:1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang C, Chen H, Wang P, Wang P, Song C, Zhang X, Wang D (2018) Multi-gene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. Plant Sci 274:410–419

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Bao LL, Zhao FY, Tang MQ, Chen T, Li YM, Wang BX, Fu BZ, Fang HD, Li GY, Cao J, Ding LN, Zhu KM, Liu SY, Tan XL (2019) BnaMPK3 is a key regulator of defense responses to the devastating plant pathogen Sclerotinia sclerotiorum in oilseed rape. Front Plant Sci 10:18

    Article  CAS  Google Scholar 

  • Wu X, Liang L, Zou Y, Zhao T, Zhao J, Li F, Yang L (2011) Aqueous two-phase extraction, identification and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.). Food Chem 129:443–453

    Article  CAS  PubMed  Google Scholar 

  • Wu XJ, Hu BC, Chen FX, Li QS, Hou SM, Fei WX, Huang XR, Jianf YF (2014) Breeding of the temporary all maintainer with purple leaf in oilseed rape (Brassica napus. L). Genet Breed 23:21–28

    Google Scholar 

  • Yan LY, Pang BP, Zhou XR, Zhang CQ (2008) Relationship between host plant preference of Liriomyza huidobrensis for different Phaseolus vulgaris varieties and plant compound contents. Sci Agric Sin 41:713–719

    CAS  Google Scholar 

  • Yang YH, Li D, Xia HC, Zhu KM, Liu XY, Chen KP (2013) Comparative proteomic analysis of rice stripe virus (RSV)-resistant and -susceptible rice cultivars. Aust J Crop Sci 7:588–593

    CAS  Google Scholar 

  • Yao Y, Sun H, Xu F, Zhang X, Liu S (2011) Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Planta 233:523–537

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Zhao H, Luo X, Gao F, Li C, Yao H, Chen H, Park S-U, Wu Q (2017) Fagopyrum tataricum FtWD40 functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco. J Plant Growth Regul 36:755–765

    Article  CAS  Google Scholar 

  • Yıldız M, Akçalı N, Terzi H (2015) Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J Plant Physiol 179:90–99

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Chiu LW, Li L (2009) Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 230:1141

    Article  CAS  PubMed  Google Scholar 

  • Zhan LY, Lin YZ (2014) Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in Purple Bok Choy (Brassicarapa var. chinensis). J Agric Food Chem 62:12366–12376

    Article  CAS  Google Scholar 

  • Zhang BX, Zhu YM, Lai YC, Hu XM, Li W, Li W, Bi YD, Xiao JL, Zhang LL (2012) Research progress of plant chalcone synthase (CHS) and its gene. J Anhui Agric Sci 40:10376–10379

    CAS  Google Scholar 

  • Zhang L, Yu YY, Liu Y, Huang XQ, Zhou XQ, Liu HY (2015) Pathogenicity differentiation of Sclerotinia sclerotiorum from the same strains derived from different rapeseed inoculums. Chin J Oil Crop Sci 37:201–205

    CAS  Google Scholar 

  • Zhao Z, Xiao L, Xu L, Xing X, Tang G, Du D (2017) Fine mapping the BjPl1 gene for purple leaf color in B2 of Brassica juncea L. through comparative mapping and whole-genome re-sequencing. Euphytica 213:80

    Article  CAS  Google Scholar 

  • Zhu Z, Lu Y (2016) Plant color mutants and the anthocyanin pathway. Chin Bull Bot 51:107–119

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFD0100305; 2016YFD0101904) and National Natural Science Foundation of China (31471527; 31271760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Li Tan.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Ding, LN., Li, M. et al. Characterization of a Rapeseed Anthocyanin-More Mutant with Enhanced Resistance to Sclerotinia sclerotiorum. J Plant Growth Regul 39, 703–716 (2020). https://doi.org/10.1007/s00344-019-10011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10011-4

Keywords

Navigation