Skip to main content
Log in

Application of Melatonin-Enhanced Tolerance to High-Temperature Stress in Cherry Radish (Raphanus sativus L. var. radculus pers)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The growth and development of cold-season plants are susceptible to high temperature. Melatonin is a plant growth regulator with potential to improve plant tolerance to biological and abiotic stresses. In our study, cherry radish (Raphanus sativus L. var. radculus pers) was cultured at a high temperature (35 °C/30 °C day/night) and different concentrations (0, 11.6, 17.4, 29.0, 34.8 and 67.0 mg L−1) of melatonin were applied to these high-temperature stressed plants to its effects on biomass, quality, antioxidant enzyme activity, chlorophyll and endogenous hormone contents. The plants were grown under normal temperature (25 °C/20 °C) as control and high-temperature condition as HT-stress treatment. The results revealed that under high temperature with 29.0 mg L−1 melatonin treatment, cherry radish biomass was significantly increased by 12.9%, and the soluble protein and soluble solid were increased by 18.7 and 9.2%, respectively. The activity of antioxidant enzyme, ascorbate peroxidase and peroxidase were increased by 43.7 and 45.5%, respectively. The chlorophyll a and carotenoid contents were increased by 7.4 and 20.0% compared with the control at 27 days. The auxin and abscisic acid contents were significantly increased by 28.5 and 6.7% compared with HT at 9 days. Thus, application of optimal rate of melatonin had a positive effect on cherry radish growth under high-temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahammed GJ, Xu W, Liu A, Chen S (2018a) COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front Plant Sci 9:998

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahammed GJ, Li Y, Li X, Han W, Chen S (2018b) Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. J Plant Growth Regul 37(4):1349–1356

    Article  CAS  Google Scholar 

  • Ahammed GJ, Xu W, Liu A, Chen S (2019) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ Exp Bot 161:303–311

    Article  CAS  Google Scholar 

  • Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V (2017) Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 62:e12401

    Article  CAS  Google Scholar 

  • Arbona V, Go’mez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19:789–797

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Yang D, Zhao Y, Ha S, Zhu J (2013) Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Mol Biol 83:651–664

    Article  CAS  PubMed  Google Scholar 

  • Baninasab B, Ghobadi C (2011) Influence of paclobutrazol and application methods on high-temperature stress injury in cucumber seedlings. J Plant Growth Regul 30:213–219

    Article  CAS  Google Scholar 

  • Byeon Y, Back K (2014) Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J Pineal Res 56:189–195

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Park S, Kim YS, Park DH, Lee S, Back K (2012) Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. J Pineal Res 53:107–111

    Article  CAS  PubMed  Google Scholar 

  • Camejo D, Torres W (2001) High temperature effect on tomato (Lycopersicon esculentum) pigment and protein content and cellular viability. Cultivos Tropicales 22(3):13–17

    Google Scholar 

  • Chen W, Yang W, Lo HF, Yeh DM (2014) Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci Hortic 179:367–375

    Article  CAS  Google Scholar 

  • Di D, Zhang C, Luo P, An CW, Guo G (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78:275–285

    Article  CAS  Google Scholar 

  • Etehadnia M, Waterer DR, Tanino KK (2008) The method of aba application affects salt stress responses in resistant and sensitive potato lines. J Plant Growth Regul 27:331–341

    Article  CAS  Google Scholar 

  • Fan J, Hu Z, Xie Y, Chan Z, Chen K, Amomobo E, Chen L (2015) Alleviation of cold damage to photosystem II and metabolisms by melatonin in bermudagrass. Front Plant Sci 6:92

    Article  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205:38–47

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R (2016) Melatonin in plants-diversity of levels and multiplicity of functions. Front Plant Sci 7:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Jha UC, Bohra A, Singh NP (2015) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Khan TA, Mazid M, Mohammad FA (2011) Review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28:97–111

    Article  Google Scholar 

  • Knudson LL, Tibbitts TW, Edwards GE (1977) Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol 60:606–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostopoulou Z, Therio I, Roumeliotis E, Kanellis AK, Molassioltis A (2015) Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seed. Plant Physiol Biochem 86:155–165

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Jin Z, Wang S, Gong B, Wen D, Wang X, Wei M, Shi Q (2015) Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Sci Hortic 181:18–25

    Article  CAS  Google Scholar 

  • Liu C, Sakimoto KK, Colón Brendan C, Sliver PA, Nocera DG (2017) Ambient nitrogen reduction cycle using a hybrid inorganic-biological system. Proc Natl Acad Sci USA 11:6450–6455

    Article  CAS  Google Scholar 

  • Locato V, de Pinto MC, De GL (2010) Different involvement of the mitochondrial, plastidial and cytosolic ascorbate-glutathione redox enzymes in heat shock responses. Physiol Plant 135:296–306

    Article  CAS  Google Scholar 

  • Lv W, Lin B, Zhang M, Hua X (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin CA, Stutz JC, Kimball BA, Idso SB, Akey DH (1995) Growth and topological changes of Citrus limon (L.) Burn f. “Eureka” in response to high temperatures and elevated atmospheric carbon dioxide. J Am Soc Hort Sci 120(6):1025–1031

    Article  Google Scholar 

  • Patra HL, Kar M, Mishre D (1978) Catalase activity in leaves and cotyledons during plant development and senescence. Biochem Pharmacol 172:385–390

    CAS  Google Scholar 

  • Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    Article  CAS  PubMed  Google Scholar 

  • Porter JR (2005) Rising temperatures are likely to reduce crop yields. Nature 436:174

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  CAS  PubMed  Google Scholar 

  • Sharma L, Priya M, Bindumadhava H, Nair RM, Nayyar H (2016) Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Sci Hortic 213:379–391

    Article  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Liu R, Chan Z (2015a) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L.) Pers.] by exogenous melatonin. J Exp Bot 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Reiter RJ, Tan DX, Chan Z (2015b) Indole-3-aceticacid inducible 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J Pineal Res 58:26–33

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang X, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z (2015c) Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in bermudagrass (Cynodon dactylon (L). Pers.). J Pineal Res 9:120–131

    Article  CAS  Google Scholar 

  • Stewart RC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan D, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang P, Sun X, Chang C, Feng F, Liang D, Cheng L, Ma F (2013) Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status. J Pineal Res 55:424–434

    Article  CAS  PubMed  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9(3):e93462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson RA, Sangha MK, Banga SS, Atwal AK, Gupta S (2014) Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. J Environ Biol 35:383–387

    PubMed  Google Scholar 

  • Xu P, Guo Y, Bai J, Shang L, Wang X (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under lowlight. Physiol Plant 132:467–478

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Cai SY, Zhang Y, Ahammed GJ, Xia X, Shi K, Zhou Y, Yu J, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457–469

    Article  CAS  PubMed  Google Scholar 

  • Yadu B, Chandrakar V, Meena RK, Poddar A, Keshavkant S (2018) Spermidine and melatonin attenuate fluoride toxicity by regulating gene expression of antioxidants in cajanus cajan L. J Plant Growth Regul 37:1113–1126

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu X, Ding H, Yang S, Chen Y (2013) Foliar application of 24-epibrassinolidealleviates high-temperature induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 51:341–349

    Article  CAS  Google Scholar 

  • Zhang N, Zhang H, Zhao B, Sun Q, Cao Y, Li R, Guo Y (2014) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo Y (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne, L.). Environ Exp Bot 138:36–45

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou M, Yuan L, Zhu S, Liu S, Ge J, Wang C (2016) Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai (Brassica campestris L.). Sci Hortic 211:87–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Key Research and Development Program of China (Grant No. 2017YFD0200706) and the National Natural Science Foundation of China (Grant No. 41571236). Shandong educational reform fund for undergraduate (Z2016M022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhang or Zhiguang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, C., Yu, X., Zhang, M. et al. Application of Melatonin-Enhanced Tolerance to High-Temperature Stress in Cherry Radish (Raphanus sativus L. var. radculus pers). J Plant Growth Regul 39, 631–640 (2020). https://doi.org/10.1007/s00344-019-10006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10006-1

Keywords

Navigation