Skip to main content
Log in

Transcriptome Profiling Reveals the Important Role of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a non-essential metallic element with potentially deleterious effects on plants, animals, and human health. Many studies have indicated that nitrogen (N) application can effectively alleviate Cd toxicity in plants. However, the function of nitrogen in this process remains unclear. In this study, high-throughput RNA sequencing and comparative analysis were carried out on poplar (Populus cathayana Rehd) trees treated with only Cd or co-treated with N and Cd, and both treatments were compared against a negative control (no Cd or N) and plants treated with only N. The results showed that approximately 48045828, 46712688, 46681202, and 48076990 clean reads were obtained in the control, Cd, N + Cd, and N treatments. Gene ontology and pathway enrichment analysis (KEGG) indicated that differentially expressed genes (DEGs) could be classified primarily into 144 pathways, among which 19 were related to heavy metal transportation and cell detoxification. The up- and down-regulated DEGs were predominately involved in glutathione (GSH) synthesis, cysteine (Cys), glycine (Gly), brassinosteroid (BR), and salicylic acid (SA)-related pathways. Real-time quantitative PCR (RT-qPCR) revealed that the expression profiles of DEGs were consistent with the results from RNA sequencing analysis. Eight candidate genes encoding GSH, Cys, Gly, BR, and SA were associated with detoxification of Cd and were selected for further screening. A schematic model to explain the involvement of DEGs and N in the Cd-responsive regulatory network is proposed. This study represents the first comprehensive transcriptome-based characterization of N- and Cd-responsive DEGs in poplar. These results provide fundamental insight into the molecular mechanism of N assistance in Cd detoxification. In addition, the results of this study build a solid foundation for further genetic manipulation of Cd accumulation in plants and for the development of phytoremediation approaches to reclaim Cd-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamis PDB, Gomes DS, Pinto ML, Panek AD, Eleutherio EC (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Amani AL (2008) Cadmium induced changes in pigment content, ion uptake, proline content and phosphoenolpyruvate carboxylase activity in Triticum aestivum seedlings. Aust J Basic Appl Sci 2:57–62

    Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–554

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

    Article  CAS  PubMed  Google Scholar 

  • Baldantoni D, Cicatelli A, Bellino A, Castiglione S (2014) Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J Environ Manage 146:94–99

    Article  CAS  PubMed  Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: cause and consequences for photosynthesis and growth. Planta 212:696–709

    Article  CAS  PubMed  Google Scholar 

  • Belkadhi A, Haro AD, Obregon S, Chaïbi W, Djebali W (2015) Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.). Ecotoxicol Environ Saf 120:102–109

    Article  CAS  PubMed  Google Scholar 

  • Bellincampi D, Dipierro N, Salvi G, Cervone F, Lorenzo GD (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxine-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benavides M, Gallego S, Tomaro M (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B 57(1):289–300

    Google Scholar 

  • Chang SW, Lee SJ, Je CH (2005) Phytoremediation of atrazine by poplar trees: toxicity, uptake, and transformation. J Environ Sci Health B 40(6):801-811

    Article  Google Scholar 

  • Chang YS, Chang YJ, Lin CT, Lee MC, Wu CW, Lai YH (2013) Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolate. Int Biodeterior Biodegradation 85:709–714

    Article  CAS  Google Scholar 

  • Chia MA, Lombardi AT, Melão MDGG, Parrish CC (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opedenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometal 23:927–940

    Article  CAS  Google Scholar 

  • David GM, Rafael M (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238:919–936

    Article  Google Scholar 

  • Esfandiari EA, Shakiba MR, Mahboob SA, Alyari H, Toorchi M (2007) Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J Food Agric Environ 5:48–53

    Google Scholar 

  • Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot 104:61–68

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liu C, Li H, Yi KK, Ding NF, Li NY, Lin YC, Fu QL (2016) Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms. J Hazard Mater 316:77–86

    Article  CAS  PubMed  Google Scholar 

  • Gustavo G, Ana JF, Diego MS, María LT (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    Article  Google Scholar 

  • Hammami SS, Chaffai R, Ferjani EE (2004) Effect of cadmium on sunflower growth, leaf pigment and photosynthetic enzymes. Pak J Biol Sci 7:1419–1426

    Article  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116(4):1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Hassan MJ, Wang F, Ali S, Zhang G (2005) Toxic effect of Cd on rice as affected by nitrogen fertilizer form. Plant Soil 277:359–365

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroids enhanced the level of antioxidant under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Hayat Q, Ahmad A (2010) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239:3–14

    Article  CAS  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 456(26):290–300

    Article  Google Scholar 

  • Hu YN, Cheng HF, Tao S (2016) The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ Int 92–93:515–532

    Article  PubMed  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  • Jiang WZ, Li JL (1992) Effect of cadmium on the construction of photosynthetic membrane system. J Yunnan University 14:318–323

    CAS  Google Scholar 

  • Jiang J, Zhuang JY, Fan YY, Shen B (2009) Mapping of QTLs for leaf malondialdehyde content associated with stress tolerance in Rice. Rice Sci 16(1):72–74

    Article  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Li JG, Jin SL, Chen YQ, Lin GL, Han XR, Li TQ, Yang XE, Zhu E (2007) Effects of nitrogen fertilizer on the root morphology and cadmium accumulation in low cadmium treatment Sedum alfredii Hance. Chin Agric Sci Bull 23:260–265 (Chinese)

    CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen JR, Islam E, Wang Y, Wu J, Ye ZQ, Yan WB, Peng DL, Liu D (2016) Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere 153:107–114

    Article  CAS  PubMed  Google Scholar 

  • Lingua G, Todeschini V, Grimaldi M, Baldantoni D, Proto A, Cicatelli A, Biondi S, Torrigiani P, Castiglione S (2014) Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil. J Environ Manage 132:9–15

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Park SY, Choi J (2011) Expression of catalase and glutathione S-transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol. Comp Biochem Physiol C 154:399–408

    CAS  Google Scholar 

  • Quan XQ, Zhang HT, Shan L, Bi YP (2006) Advances in plant metallothionein and its heavy metal detoxification mechanisms. Hereditas 28(3):375–382

    CAS  PubMed  Google Scholar 

  • Richter Q, Nguyen HA, Nguyen KL, Nguyen VP, Biester H, Schmidt P (2016) Phytoremediation by mangrove trees: experimental studies and model development. Chem Eng J 294:389–399

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plants Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley-Interscience Publication, New York, pp 133–150

    Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    Article  CAS  PubMed  Google Scholar 

  • Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV (2016) Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot 122:19–28

    Article  CAS  Google Scholar 

  • Shi T, GaO Z, Wang L, Zhang Z, Zhuang W, Sun H, Zhong W (2012) Identification of differentially-expressed genes associated with pistil abortion in Japanese apricot by genome-wide transcriptional analysis. PLoS One 7:e47810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223

    CAS  PubMed  Google Scholar 

  • Sterckeman T, Goderniaux M, Sirguey C, Cornu JY, Nguyen C (2015) Do roots or shoots control cadmium accumulation in the hyperaccumulator Noccaea caerulescens? Plant Soil 392:87–99

    Article  CAS  Google Scholar 

  • Sun GW, Chen RY, Liu HC (2005) Advances on investigation of effect of cadmium on photosynthesis and nitrogen metabolism of plant. Chin Agric Sci Bull 9(234–236):251 (Chinese)

    Google Scholar 

  • Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FMG (2004) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002

    Article  Google Scholar 

  • Vassilev A, Iordanov I, Chakalova E, Kerin V (1995) Effect of cadmium stress on growth and photosynthesis of young barley (H. vulgare L.) plants. 2. structural and functional changes in the photosynthetic apparatus. Bul J Plant Physiol 21:12–21

    CAS  Google Scholar 

  • Villiers F, Jourdain A, Bastien O, Leonhardt N, Fujioka S, Tichtincky G, Parcy F, Bourguignon J, Hugouvieux V (2012) Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana. J Exp Bot 63(3):1185–1200

    Article  CAS  PubMed  Google Scholar 

  • Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 30:715–727

    Article  Google Scholar 

  • Volland S, Schaumlöffel D, Dobritzsh D, Krauss GJ, Lütz-Meindl U (2013) Identification of phytochelatins in the cadmium-stressed conjugating green alga Micrasterias denticulate. Chemosphere 91:448–454

    Article  CAS  PubMed  Google Scholar 

  • Wan XQ, Zhang F, Wang CL, Ding YH (2012) Effects of nitrogen supplement on photosynthetic characteristic and growth rate of Eucalyptus Grandis under three kind of heavy metal stress. J Nucl Agric Sci 26(7):1087–1093 (Chinese)

    Google Scholar 

  • Wångstrand H, Eriksson J, öborn I (2007) Cadmium concentration in winter wheat as affected by nitrogen fertilization. Eur J Agron 26:209–214

    Article  Google Scholar 

  • Wu HL, Chen CL, Du J, Liu HF, Cui Y, Zhang Y, He YJ, Li JM, Feng ZY, Wang YQ, Chu CC, Ling HQ (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158(2):790–800

    Article  CAS  PubMed  Google Scholar 

  • Xu ZH, Shen GJ, Zhu CQ, Xu LJ, He Y, Yu GS (2006) Molecular mechanisms of plant resistance to cadmium toxicity. Chin J Appl 17(6):1112–1116

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Yang WD, Ding ZL, Zhao FL, Wang YY, Zhang XC, Zhu ZQ, Yang XE (2015) Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: application for phytoremediation. J Geochem Explor 149:1–7

    Article  Google Scholar 

  • Yang YJ, Xiong J, Chen RJ, Fu GF, Chen TT (2016) Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ Exp Bot 122:141–149

    Article  CAS  Google Scholar 

  • Yoshimura K, Yabute Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WQ (2008) Variation of some physiological process and biomass of Kandelia candel under stress of N and Cd. The academic dissertation of Fujian Agriculture and Forestry University

  • Zhang X, Uroic MK, Xie WY, Zhu YG, Chen BD, McGrath SP, Feldmann J, Zhao FJ (2012) Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. Environ Pollut 165:18–24

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wan XQ, Zhong Y (2014) Nitrogen as an important detoxification factor to cadmium stress in poplar plants. J Plant Interact 9(1):249–258

    Article  CAS  Google Scholar 

  • Zouari M, Elloumi N, Ahmed CB, Delmail D, Rouina BB, Abdallah FB, Labrousse P (2016) Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol Eng 86:202–209

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professors Cheng XJ and Zhou CS for providing the materials used in this study. This work was supported by the National Natural Science Fund of China (No. 31300514) and by the 12th Five Year Key Programs for forest breeding in Sichuan Province (No. 2016YZGG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, J., Huang, J. et al. Transcriptome Profiling Reveals the Important Role of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants. J Plant Growth Regul 36, 942–956 (2017). https://doi.org/10.1007/s00344-017-9699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9699-1

Keywords

Navigation