Skip to main content

Advertisement

Log in

Bacterial-Mediated Tolerance and Resistance to Plants Under Abiotic and Biotic Stresses

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant growth-promoting bacteria (PGPB) are capable of alleviating environmental stress and eliciting tolerance in plants to promote their growth. Several PGPB elicit physical and/or chemical changes related to plant defense in the form of induced systemic resistance (ISR) under biotic stress. Researchers emphasized that PGPB-elicited ISR has suppressed plant diseases caused by a range of pathogens in both the greenhouse and field. PGPB-elicited physical and chemical changes in plants result in enhanced tolerance to drought, salt, and other factors that have been described as a form of induced systemic tolerance under abiotic stress. This review will focus on recent research concerning interactions between PGPB and plants under biotic and abiotic stresses. The use of PGPB requires precise understanding of the interactions between plant-bacteria, among bacteria-microbiota, and how biotic and abiotic factors influence these relationships. Consequently, continued research is needed to develop new approaches to ameliorate the efficiency of PGPB and to understand the ecological, genetic, and biochemical relationships in their habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd El-Daim IA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337–350

    Article  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  PubMed  CAS  Google Scholar 

  • Agrios GN (1988) Plant pathology, 3rd edn. Academic Press Inc., San Diego

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signalling in plants. Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ait bakra E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ali Sk Z, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fert Soil 46:45–55

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Ammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na +/H + antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Arkipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshweri DK (2001) Isolation of siderophore producing strain of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with pseudomonas spp. containing ACC-deaminase partially eliminates the effects Of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobero MT (2006a) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006b) Seed inoculation with Azospirillum mitigate NaCl effects on lettuce. Sci Horticul 109:8–14

    Article  CAS  Google Scholar 

  • Barea JM, Azcon R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351–371

    Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Article  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated gravepive plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmas strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Barraquio WL, Segubre EM, Gonzalez MAS, Verma SC, James EK, Ladha JK, Tripathi AK (2000) Diazotrophic entetrobacteria: what is their role in the rhizosphere of rice? In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRRI, Los Banos, pp 93–118

    Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grow in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  PubMed  CAS  Google Scholar 

  • Ben Khaled L, Gomez AM, Ourraqi EM, Oihabi A (2003) Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.). Agronomie 23:571–580

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Berger S, Bell E, Sadka A, Mullet JE (1995) Arabidopsis thaliana AtVsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol Biol 27:933–942

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu P, Coné jé ro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry A-A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na + recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxalevansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342

    Article  PubMed  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60(11):3097–3107

    Article  PubMed  CAS  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, Berlin pp 193–206

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  • Broetto F, Marchese JA, Leonardo M, Regina M (2005) Fungal elicitor-mediated changes in polyamine content, phenylalanine ammonia-lyase and peroxidase activities in bean cell culture. Gen Appl Plant Physiol 31:235–246

    Google Scholar 

  • Buscot F (2005) What are soils? In: Buscot F, Varma S (eds) Micro- organisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 3–18

    Chapter  Google Scholar 

  • Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasiliense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, De Bruijn FJ, Thomas- Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f.sp. radicis-lycopersici. Mol Plant-Microbe Interact 10:79–86

    Article  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R,3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21(8):1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK (2011) Plant growth-promotion (PGP) activities and molecular characterization of rhizobacterial strains isolated from soybean (Glycine max) plants against charcoal rot pathogen, Macrophomina phaseolina. Biotechnol Lett 33:2287–2295

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action.Indian. J Microbiol 47:289–297

    CAS  Google Scholar 

  • Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agent that initiate plant growth and defense responses. Curr Sci 94:595–604

    CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Bakra E (2005) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Croft KPC, Voisey CR, Slusarenkl AJ (1990) Mechanism of hypersensitive cell collapse: correlation of increase lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris cv. Red Mexican inoculated with avirulent race/cells of Pseudomonas syringae pv. Phaseolicola. Physiol Mol Plant Pathol 36:49–62

    Article  CAS  Google Scholar 

  • Cronin D, Moe¨nne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Role of 2, 4-diacetylphloroglucinol in the interaction of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cullis PM, Jones GD, Symons MC, Lea JS (1987) Electron transfer from protein to DNA in irradiated chromatin. Nature 330(6150):773–774

    Article  PubMed  CAS  Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Rosario Espuny M, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Bio Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Del Amor F, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90

    Article  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Ash F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32:1682–1694

    Article  CAS  Google Scholar 

  • Djavaheri M (2007) Iron-regulated metabolites of plant growth-promoting pseudomonas fluorescens WCS374: their role in induced systemic resistance. Ph.D. Thesis, Utrecht University, Utrecht

  • Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth promoting bacterium Pseudomonas sp. UW4. Plos One 8(3):1–19

    Google Scholar 

  • Duffy BK, De´fago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopath 87:1250–1257

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45:563–571

    Article  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Eco 36:184–189

    Article  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya Basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in Central Asia. Taylor- Francis, New York, pp 147–162

    Chapter  Google Scholar 

  • Else MA, Jackson MB (1998) Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Aus J Plant Physiol 25(4):453–458

    Article  CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109:813–820

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Bio 10:366–371

    Article  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Renegal Z (2002) Improved tolerance of maize plants to salt stress by Arbuscular mycorrhiza is related to higher accumulation of leaf P-concentration of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446(1–2):149–155

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lammattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lammattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geng SM, Yan DH, Zhang TX, Weng BS, Zhang ZB, Qin TL (2015) Effects of drought stress on agriculture soil. Nat Hazards 75:1997–2011

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviate salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukherji KG (2007) Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Patten C, Holguin G, Penrose D (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Go¨hre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  CAS  Google Scholar 

  • Gómez-Sagasti M, Marino D (2015) PGPRs and nitrogen fixing legumes: a perfect team for efficient Cd phytoremediation? Front Plant Sci 81(6):1–9

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gryndler M (2000) Interactions of Arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer Academic Publishers, Dordrecht, pp 239–262

    Chapter  Google Scholar 

  • Gupta A, Gopal M (2008) siderophore production by plant growth promoting rhizobacteria. Ind J Agric Res 42:153–156

    Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertil Soil 35:399–405

    Article  CAS  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek SV, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hassett DJ, Charniga L, Bean K, Ohman DE, Cohen MS (1992) Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of manganese-cofactored superoxide dismutase. Infect Immu 60:328–336

    CAS  Google Scholar 

  • Hassett DJ, Woodruff WA, Wozniak DJ, Vasil ML, Cohen MS, Ohman DE (1993) Cloning of sodA and sodB genes encoding manganese and iron superoxide dismutase in Pseudomonas aeruginosa: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J Bacteriol 175:7658–7665

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defense. Trend Plant Sci 13:264–272

    Article  CAS  Google Scholar 

  • Heitz T, Geoffroy P, Fritig B, Legrand M.(1999) The PR-6 family: proteinase inhibitors in plant-microbe and plant-insects interactions. In: Datta SK and Muthukrishnan S (Eds.); Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 131–155

  • Hepper CM (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (ed) Soil microbiology, a critical review. Wiley, New York, pp 93–111

    Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Prot 27:996–1002

    Article  Google Scholar 

  • Ho¨fte M, Bakker PAHM (2007) Competition for iron and induced systemic resistance by siderophores of plant growth-promoting rhizobacteria. In: Varma A, Chincholkar SB (eds) Microbial siderophores. Springer, Berlin, pp 121–134

    Chapter  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genetic and physiological functions. Plant Physiol 136:2457–2462

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hu HB, Xu YQ, Chen F, Zhang XH, Hur BK (2005) Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotechnol 15:86–90

    CAS  Google Scholar 

  • Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can J Microbiol 54:248–258

    Article  PubMed  CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Me´traux J-P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mole Plant-Microbe Interact 16:851–858

    Article  CAS  Google Scholar 

  • Jain S, Choudhary DK (2014) Induced defense-related proteins in soybean (Glycine max L. Merrill) plants by Carnobacterium sp. SJ-5 upon challenge inoculation of Fusarium oxysporum. Planta. doi:10.1007/s00425-014-2032-3

  • Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Bacterium-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc Natl Acad Sci, India, Sect. B Biol Sci 83(4):561–567

    Article  CAS  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza: a key component of sustainable plant soil ecosystems. In: Hock B (ed) The Mycota: fungal associations, vol 9. Springer, Berlin, pp 95–113

    Chapter  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2010) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33(3):797–802

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    PubMed  CAS  Google Scholar 

  • Jubani-Marì T, Munné-Bosch S, Alegre L (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiol Biochem 48:351–358

    Article  CAS  Google Scholar 

  • Kasotia A, Jain S, Vaishnav A, Kumari S, Gaur RK, Choudhary DK (2012) Soybean growth promotion by Pseudomonas sp. strain VS-1 under salt stress. Pak J Biol Sci 15:698–701

    Article  PubMed  Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res 4(1):31–41

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldàn A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldàn A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldàn A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Kombrink E, Somssich IE (1997) Pathogenesis-related proteins and plant defense. In: Carroll G, Tudzynski P (eds) The Mycota V, part A plant relationships. Springer, Berlin, pp 107–128

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought salt, and temperature stress-induced metabolic rearrangement and regulatory net-works. J Exp Bot 4:1593–1608

    Article  CAS  Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, Gardene BBM, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68:3226–3237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Dron M, Schmid J, Dixon R, Lamb C (1989) Developmental and environmental regulation of a phenylalanine ammonia-lyase-β-glucuronidase gene fusion in transgenic tobacco plants. Proc Natl Acad Sci USA 86:9284–9288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria an asparagus seedling and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55:388–394

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lucas GJA, Probanza A, Ramos B, Palomino MR, Gutierrez Manero FJ (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176

    Article  Google Scholar 

  • Lutgtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54(3):543–552

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Me´traux J-P, De´fago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopath 84:139–146

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick B (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. Plant Growth Regul 18:49–53

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Bioch 42:565–572

    Article  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Ho¨fte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mole Plant Path 6:177–185

    Article  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds D (eds) Arbuscular Mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 4–18

    Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He HY, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miransari M (2014) Use of microbes for the alleviation of soil stresses. Springer, Berlin

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora N (eds) plant microbes symbiosis: applied facets. Springer, Berlin, pp 111-125

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mnasri B, Aouani ME, Mhamdi R (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Bio Biochemi 39:1744–1750

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance.Ann Rev. Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, Guo JM, Passioura JB, Cramer GR (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salt treated barley. Aust J Plant Physiol 27:949–957

    Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora N (eds) plant microbes symbiosis: applied facets. Springer, Berlin, pp 1–36

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2013a) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. doi:10.1007/s10725-013-9874-8

    Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2013b) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. doi:10.1007/s10725-013-9874-8

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed Central  PubMed  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Scotti MR (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasiliense. Task Veget Sci 44:133–147

    Article  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological Control of Plant Pathogens. T Plant Healt Instruct. doi:10.1094/PHI-A-2006-1117-02

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9

    Article  CAS  Google Scholar 

  • Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pe´ rez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Funct Plant Biol 37:592–603

    Article  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Métraux J-P, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Métraux J-P, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol 47:368–372

    Article  PubMed  CAS  Google Scholar 

  • Pereyra MA, Zlazar CA, Barassi CA (2006) Root phospholipids in Azospirillum inoculated wheat seedlings exposed to water stress. Plant Physiol Biochemi 44:873–879

    Article  CAS  Google Scholar 

  • Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signalling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Ton J, van Loon LC (2001) Cross-talk between plant defense signaling pathways: boost or burden? Agri Biotech Net 3:1–18

    Google Scholar 

  • Pitzschke AM, Forzani C, Hirt H (2006) Reactive oxygen species signalling in plants. Antioxi Redox Sign 8:1757–1764

    Article  CAS  Google Scholar 

  • Podile AR, Lakshmi VDV (1998) Seed bacterization with Bacillus subtilis increases phenylalanine ammonia-lyase and reduces the incidence of fusarium wilt of pigeonpea. Phytopathology 146:255–259

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14–3-3 protein that is up-regulated by drought stress during the AM symbiosis. Micro Ecol 52(3):575–582

    Article  Google Scholar 

  • Potter S, Uknes S, Lawton K, Winter AM, Chandler D, DiMaio J, Novitzky R, Ward E, Ryals J (1993) Regulation of a hevein-like gene in Arabidopsis. Mol. Plant-Microbe Interact 6:680–685

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses, growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetyl-phloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1–96. Appl Environ Microbiol 67:2545–2554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    PubMed Central  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopath 89:470–475

    Article  CAS  Google Scholar 

  • Raghothama KG (2005) Phosphorus. In: Broadly MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, pp 112–126

    Google Scholar 

  • Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptusurophylla by fluorescent Pseudomonas spp. Euro J Plant Pathol 113:59–70

    Article  CAS  Google Scholar 

  • Ray H, Douches DS, Hammerschmidt R (1998) Transformation of potato with cucumber peroxidase: expression and disease response. Physiol Mol Plant Pathol 53:93–103

    Article  CAS  Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified. App Environ Microbiol 67:495–498

    Article  CAS  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rodrìguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodriguez-Rosales MP, Jiang X, Ga´ lvez FJ, Aranda MN, Cubero B, Venema K (2008) Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179:366–377

    Article  PubMed  CAS  Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertilizer management and bio-inoculation of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Rokhzadi A, Toashih V (2011) Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth-promoting rhizobacteria. Aust J Cop Scienc 5:44–48

    Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetic 139:1393–1409

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought induced nodule senescence in soybean plants. Plant Physiol 82:346–350

    Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319

    Article  PubMed  CAS  Google Scholar 

  • Ryu C-M, Hu C-H, Reddy MS, Kloepper JW (2003) Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160:413–420

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Bio Contl 39:282–289

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting Rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotech 34:635–648

    Article  CAS  Google Scholar 

  • Samac DA, Hironaka CM, Yallaly PE, Shah DM (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93:907–914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growt Regul 62:21–30

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Saskia CM, Wees V, Luijendijk M, Smoorenburg I, van Loon LC, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549

    Article  Google Scholar 

  • Schnider U, Keel C, Blumer C, Troxler J, De´fago GHaas D (1995) Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177:5387–5392

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li J, Moffatt B, Glick B (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Shahzad SM, Arif MS, Ashraf M, Abid M, Ghazanfar MU, Riaz M, Yasmeen T, Zahid MA (2015) Alleviation of abiotic stress in medicinal plants by PGPR. Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Berlin, pp 135–166

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pretreated mycorrhizal fungi. J of Plant Physiol 164:1144–1151

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean. Microbiol Res 158:77–81

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na +/H + antiporter gene AtNHX1 by salt stress and ABA. Plant Mole Biol 50:543–550

    Article  CAS  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Shaukat SS (2001) Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J Phytopathol 149:337–346

    Article  Google Scholar 

  • Siddiqui MA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2010) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a001438

    Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Srivastava CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56(4):453–457

    Article  PubMed  CAS  Google Scholar 

  • Stearns JC, Woody OZ, McConkey BJ, Glick BR (2012) Effects of bacterial ACC deaminase on Brassica napus gene expression measured with an Arabidopsis thaliana microarray. Mol Plant-Microb Interact 25:668–676

    Article  CAS  Google Scholar 

  • Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant defence in arthropod management programs. Arch Insect Biochem Physiol 51:222–235

    Article  PubMed  CAS  Google Scholar 

  • Suarez R, Wong A, Ramirez M, Barraza A, OrozcoMdel C, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966

    Article  PubMed  CAS  Google Scholar 

  • Swaine EK, Swaine MD, Killham K (2007) Effects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings on different provenances. Agroforest Syst 69:135–145

    Article  Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annum L.). Can J Microbiol 53:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens Bioengine 4:236–243

    Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mole Plant-Microbe Interact 25(2):241–249

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylic acid-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaji N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Toal ME, Yeomans C, Killham K, Meharg AA (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222:263–281

    Article  CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ullah S, Bano A (2015) Isolation of PGPRs from rhizospheric soil of halophytes and its impact on maize (Zea mays L.) under induced soil salinity. Can J of Microbiol 11:1–7

    Google Scholar 

  • Vaan loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Euro J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrecht, pp 521–574

    Chapter  Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • Van Loon LC, Bakker PAHM, Van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mole Plant-Microbe Interact 21:1609–1621

    Article  CAS  Google Scholar 

  • van Wees SCM, Luijendijk M, Smoorenburg I, van Loon Leendert C, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mole Biol 41:537–549

    Article  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  PubMed  CAS  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  PubMed  CAS  Google Scholar 

  • Vleesschauwer D, Ho¨Fte M (2009) Rhizobacteria-Induced Systemic Resistance. Advanc Bot Res 51:223–281

    Article  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008a) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Liu P-P, Cameron RK, Park S-W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008b) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. The Plant J 56:445–456

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and Extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119

    Article  CAS  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signaled plant gene expression. Trends Plant Sci 2:302–307

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • White PJ (2003) Ion Transport. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic Press, London, pp 625–634

    Chapter  Google Scholar 

  • Wilkinson JF (1958) The extracellular polysaccharides of bacteria. Bacteriol Rev 22:46–73

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. PNAS 94:514–549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Reddy MS, Ryu CM, Mc Inroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  PubMed  CAS  Google Scholar 

  • Yang SF (1987) The biosynthesis and metabolism of 1-(malo-nylamino)cyclopropane-1-carboxylic acid in relation to ethylene production. In Schreiber K, Schütte HR, Sembdner G (eds) Con- jugated Plant Hormones: Structure, Metabolism, and Function. VEB Deutscher Verlag der Wissenschaaften, Berlin, pp 92–101

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays, L.). World Acd Sci Engi Technol 49:90–92

    Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plans under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    PubMed  CAS  Google Scholar 

  • Zhang Y, Fernando WGD (2004) Presence of biosynthetic genes for phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol and pyrrolnitrin in Pseudomonas chlororaphis strain PA-23. Can J Plant Pathol 6:430–431

    Google Scholar 

  • Zhang S, Moyne A-L, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of sodium transporter HKT1. Mole Plant-Microbe Interact 21:737–744

    Article  CAS  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Mi-Seong Kim, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mole Plant-Microbe Interact 23:1097–1104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some of the research in the present review has partially been supported by DBT and SERB Grant No. BT/PR1231/AGR/021/340/2011 and SR/FT/LS-129/2012, respectively, to DKC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, D.K., Kasotia, A., Jain, S. et al. Bacterial-Mediated Tolerance and Resistance to Plants Under Abiotic and Biotic Stresses. J Plant Growth Regul 35, 276–300 (2016). https://doi.org/10.1007/s00344-015-9521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9521-x

Keywords

Navigation