Skip to main content
Log in

Estimating trends of the Mediterranean Sea level changes from tide gauge and satellite altimetry data (1993–2015)

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The impact of climate change on sea level has re]a great deal of attention by scientists worldwide. In this context, the problem of sea levels on global and regional scales have been analyzed in a number of studies based on tide gauges observations and satellite altimetry measurements. This study focuses on trend estimates from 18 high-quality tide gauge stations along the Mediterranean Sea coast. The seasonal Mann-Kendall test was run at a 5% significance level for each of the 18 stations for the period of 1993–2015 (satellite altimetry era). The results of this test indicate that the trends for 17 stations were statistically significant and showed an increase (no significant trend was observed only at one station). The rates of sea level change for the 17 stations that exhibit significant trends, estimated using seasonal Sen’s approach, range after correction for Vertical Land Motion (VLM) from 1.48 to 8.72 mm/a for the period 1993–2015. Furthermore, the magnitude of change at the location of each tide gauge station was estimated using the satellite altimetry measurements. Thus, the results obtained agree with those from the tide-gauge data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argus D F, Peltier W R, Drummond R, Moore A W. 2014. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophysical Journal International, 198(1): 537–563.

    Article  Google Scholar 

  • Bindoff N L, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum C K, Talley L D, Unnikrishnan A. 2007. Observations: oceanic climate change and sea level. In: Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Birol F, Delebecque C. 2014. Using high sampling rate (10/20 Hz) altimeter data for the observation of coastal surface currents: a case study over the northwestern Mediterranean Sea. Journal of Marine Systems, 129: 318–333.

    Article  Google Scholar 

  • Bonaduce A, Pinardi N, Oddo P, Spada G, Larnicol G. 2016. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Climate Dynamics, 47(9–10): 2 851–2 866.

    Article  Google Scholar 

  • Church J A and White N J. 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4–5): 585–602.

    Article  Google Scholar 

  • CLS. 2018. SSALTO/DUACS Experimental Product Handbook, SALP-MU-P-EA-23172-CLS, 49 pp. https://doi.org/www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_duacs_experimental.pdf. Accessed on 24 Sep. 2018.

    Google Scholar 

  • Douglas B C, Peltier W R. 2002. The puzzle of global sea-level rise. Physics Today, 55(3): 35–40.

    Article  Google Scholar 

  • Fenoglio-Marc L, Braitenberg C, Tunini L. 2012. Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, Part A/B/C, 40–41: 47–58.

    Article  Google Scholar 

  • Fenoglio-Marc L. 2002. Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Physics and Chemistry of the Earth, Part A/B/C, 27(32–34): 1 419–1 431.

    Article  Google Scholar 

  • Haddad M, Hassani H, Taibi H. 2013b. Sea level in the Mediterranean Sea: seasonal adjustment and trend extraction within the framework of SSA. Earth Science Informatics, 6(2): 99–111.

    Article  Google Scholar 

  • Haddad M, Taibi H, Mohammed Arezki S M. 2013a. On the recent global mean sea level changes: trend extraction and El Nino’s impact. Comptes Rendus Geoscience, 345(4): 167–175.

    Article  Google Scholar 

  • Hipel K W, McLeod A I. 1994. Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam.

    Google Scholar 

  • Hirsch R M, Slack J R, Smith R A. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1): 107–121.

    Article  Google Scholar 

  • Holgate S J, Matthews A, Woodworth P L, Rickards L J, Tamisiea M E, Bradshaw E, Foden P R, Gordon K M, Jevrejeva S, Pugh J. 2013. New data systems and products at the permanent service for mean sea level. Journal of Coastal Research, 29(3): 493–504.

    Google Scholar 

  • IOC. 1992. Joint IAPSO-IOC Workshop on Sea Level Measurements and Quality Control. Intergovernmental Oceanographic Commission, Workshop Report No. 81, IOC, Paris.

    Google Scholar 

  • IPCC. 2013. The Physical Science Basis. https://doi.org/www.climatechange2013.org. Accessed on 17 July 2018.

    Google Scholar 

  • Kendall M G. 1975. Rank Correlation Methods. 4th edn. Charles Griffin, London.

    Google Scholar 

  • Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245–259.

    Article  Google Scholar 

  • Motiee H, McBean E. 2009. An assessment of long term trends in hydrologic components and implications for water levels in lake superior. Hydrology Research, 40(6): 564–579.

    Article  Google Scholar 

  • Nicholls R J, Cazenave A. 2010. Sea-level changes and their impacts on coastal zones. Science, 328(5985): 1 517–1 520.

    Article  Google Scholar 

  • Pascual A, Pujol M I, Larnicol G, Traon P Y L, Rio M H. 2007. Mesoscale mapping capabilities of multisatellite altimeter missions: first results with real data in the Mediterranean Sea. Journal of Marine Systems, 65(1–4): 190–211.

    Article  Google Scholar 

  • Peltier W R, Argus D F, Drummond R. 2015. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. Journal of Geophysical Research. Solid Earth, 120(1): 450–487.

    Article  Google Scholar 

  • Permanent Service for Mean Sea Level — PSMSL. 2018. https://doi.org/www.psmsl.org, Accessed on 2018-02-18.

  • Salmi T, Määttä A, Antilla P, Ruoho-Airola T, Amnell T. 2002. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates — the Excel Template Application Makesens. Finnish Meteor-ological Institute, Helsinki, Finland, 35p.

    Google Scholar 

  • Sen P K. 1968. Estimates of the regression coefficient based on Kendall’S tau. Journal of the American Statistical Association, 63(324): 1 379–1 389.

    Article  Google Scholar 

  • Tabari H, Marofi S, Ahmadi M. 2011. Long-term variations of water quality parameters in the Maroon River, Iran. Environmental Monitoring and Assessment, 177(1–4): 273–287.

    Article  Google Scholar 

  • Taibi H, Kahlouche S, Haddad M, Rami A. 2013. Trends in global and regional sea level from satellite altimetry within the framework of Auto-SSA. Arabian Journal of Geosciences, 6(12): 4 575–4 584.

    Article  Google Scholar 

  • Vignudelli S, Cipollini P, Roblou L, Lyard F, Gasparini G P, Manzella G, Astraldi M. 2005. Improved satellite altimetry in coastal systems: case study of the Corsica channel (Mediterranean Sea). Geophysical Research Letters, 32(7): L07608.

    Article  Google Scholar 

  • White N J, Church J A, Gregory J M. 2005. Coastal and global averaged sea level rise for 1950 to 2000. Geophysical Research Letters, 32(1): L01601.

    Article  Google Scholar 

  • Woodworth P L, Spencer N E, Alcock G A. 1990. On the availability of European mean sea level data. International Hydrographic Review, 67(1): 131–146.

    Google Scholar 

  • Wöppelmann G. 1997. Rattachement géodésique des marégraphes dans un système de référence mondial par techniques de géodésie spatiale. Paris Observatory, France.

    Google Scholar 

  • XLSTAT. 2017. Data Analysis and Statistical Solution for Microsoft Excel. Addinsoft, Paris, France.

    Google Scholar 

Download references

Acknowledgement

The authors are enormously grateful to PSMSL for providing sea level time series and to AVISO for providing altimetry data. The authors greatly thank the anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebib Taibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taibi, H., Haddad, M. Estimating trends of the Mediterranean Sea level changes from tide gauge and satellite altimetry data (1993–2015). J. Ocean. Limnol. 37, 1176–1185 (2019). https://doi.org/10.1007/s00343-019-8164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8164-3

Keyword

Navigation