Skip to main content
Log in

DNA barcoding of the family Sparidae along the coast of China and revelation of potential cryptic diversity in the Indo- West Pacific oceans based on COI and 16S rRNA genes

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Sparids are of considerable economic importance in marine fishery and aquaculture in China, and the species diversity of this group is considered relatively high. However, the accurate species identification and delimitation of sparids in China remain unaddressed. In this study, we used mitochondrial cytochrome oxidase subunit І (COI) and 16S ribosomal RNA (16S) genes to conduct DNA barcoding and species delimitation in eleven sparid species from the coastal waters of China. Based on Kimura-2 parameter genetic distances, the mean intraspecific/interspecific variation for COI and 16S were calculated as 0.004/0.152 and 0.002/0.072, respectively. All the conspecific individuals formed monophyletic clusters in neighbour-joining trees of both markers. An obvious barcoding gap was detected for each species, and a common genetic threshold of 1.3% sequence divergence was defined for species delimitation in both markers. Although the sequence variation of 16S was generally lower than that of COI, the results indicated that sparid species could be effectively and accurately identified and delimited by COI as well as 16S. Thus, we propose that the COI gene serve as the standard DNA barcode for sparids, and that the 16S gene could also be an ideal candidate barcode. Moreover, each of the six sparid species ( Argyrops spinifer, Rhabdosargus sarba, Dentex hypselosomus, Acanthopagrus latus, Acanthopagrus australis and Acanthopagrus berda ) showed high intraspecific divergence (>1.3% genetic threshold) with the remarkable geographic lineages in the Indo-West Pacific oceans, which supported that potential unrecognized cryptic species were in them. The potential cryptic diversity revealed here might be primarily attributed to the allopatric divergences caused by the long-term geographic isolation between the Indian and West Pacific oceans or between the opposite sides of the Indian Ocean. The results further suggest that a revision of taxonomic status of these species is required, followed by development of a biodiversity conservation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armani A, Guardone L, Castigliego L, D’Amico P, Messina A, Malandra R, Gianfaldonia D, Guidia A. 2015. DNA and mini–DNA barcoding for the identification of Porgies species(family Sparidae) of commercial interest on the international market. Food Control, 50: 589–596.

    Article  Google Scholar 

  • Asgharian H, Sahafi H H, Ardalan A A, Shekarriz S, Elahi E. 2011. Cytochrome c oxidase subunit 1 barcode data of fish of the Nayband National Park in the Persian Gulf and analysis using meta–data flag several cryptic species. Mol. Ecol. Resour., 11(3): 461–472.

    Article  Google Scholar 

  • Bhattacharya M, Sharma A R, Patra B C, Sharma G, Seo E M, Nam J S, Chakraborty C, Lee S S. 2016. DNA barcoding to fishes: current status and future directions. Mitochondrial DNA Part A, 27(4): 2 744–2 752.

    Google Scholar 

  • Cardoni S, Tenchini R, Ficulle I, Piredda R, Simeone M C, Belfiore C. 2015. DNA barcode assessment of Mediterranean mayflies(Ephemeroptera), benchmark data for a regional reference library for rapid biomonitoring of freshwaters. Biochem. Syst. Ecol., 62: 36–50.

    Article  Google Scholar 

  • Carpenter K E, Niem V H. 2001. FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 5. Bony fishes part 3 (Menidae to Pomacentridae). FAO, Rome. p.2 990–3 003.

    Google Scholar 

  • Carpenter K E, Springer V G. 2005. The center of the center of marine shore fish biodiversity: the Philippine islands. Environ. Biol. Fish., 72(4): 467–480.

    Article  Google Scholar 

  • Chen Y X, Liu J, Liu L. 2014. Comparative osteology in eight sparid fishes(Osteichthyes: Perciformes) with remarks on their classification. J. Fish. China, 38(9): 1 360–1 374.(in Chinese with English abstract)

    Google Scholar 

  • Chen Y X, Liu J, Wu R X. 2015a. A new record of blue–spotted seabream Pagrus caeruleostictus from Chinese coastal waters documented from morphology and DNA barcoding. Chin. J. Oceanol. Limnol., 33(2): 500–505.

    Article  Google Scholar 

  • Chen Y X, Wu R X, Liang N, Liu J. 2015b. Phylogenetic relationship in family Sparidae of China in mitochondrial COI gene sequence. Oceanol. Limnol. Sin., 46(3): 611–619.(in Chinese with English abstract)

    Google Scholar 

  • Chiba S N, Iwatsuki Y, Yoshino T, Hanzawa N. 2009. Comprehensive phylogeny of the family Sparidae (Perciformes: Teleostei) inferred from mitochondrial gene analyses. Genes Genet. Syst., 84(2): 153–170.

    Article  Google Scholar 

  • Darriba D, Taboada G L, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods, 9(8): 772.

    Article  Google Scholar 

  • Dasmahapatra K K, Mallet J. 2006. Taxonomy: DNA barcodes: recent successes and future prospects. Heredity, 97(4): 254–255.

    Article  Google Scholar 

  • Fan J R, Wu R X, Zhao Y J, Liu J. 2011. Progresses on taxonomy and phylogeny of family Sparidae from China. J. Fish. Sci. China, 18(2): 472–480.(in Chinese with English abstract)

    Google Scholar 

  • Felsenstein J P. 2002. PHYLIP(phylogeny inference package) version 3. 6. Phil. Trans. R. Soc. Lond. B., 356: 1 661–1 679.

    Google Scholar 

  • Funk D J, Omland K E. 2003. Species–level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst., 34(1): 397–423.

    Article  Google Scholar 

  • Guan Z C, Tang W Q, Wu H L. 2012. One new species of the genus Evynnis from China(Perciformes, Sparidae). Acta Zoot. Sin., 37(1): 217–221.(in Chinese with English abstract)

    Google Scholar 

  • Hajibabaei M, Janzen D H, Burns J M, Hallwachs W, Hebert P D N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. USA, 103(4): 968–971.

    Article  Google Scholar 

  • Hajibabaei M, Singer G A C, Hebert P D N, Hickey D A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet., 23(4): 167–172.

    Article  Google Scholar 

  • He L J, Zhang A B, Zhu C D, Weese D, Qiao Z G. 2011. Phylogeography of the mud crab( Scylla serrata ) in the Indo–West Pacific reappraised from mitochondrial molecular and oceanographic clues: transoceanic dispersal and coastal sequential colonization. Mar. Ecol., 32(1): 52–64.

    Article  Google Scholar 

  • Hebert P D N, Cywinska A, Ball S L, Dewaard J R. 2003a. Biological identification through DNA Barcodes. Proc. Roy. Soc. B: Biol. Sci., 270(1512): 313–321.

    Article  Google Scholar 

  • Hebert P D N, Penton E H, Burns J M, Janzen D H, Hallwachs W. 2004a. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA, 101(41): 14 812–14 817.

    Article  Google Scholar 

  • Hebert P D N, Ratnasingham S, De Waard J R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Roy. Soc. B: Biol. Sci., 270(Suppl.1): S96–S99.

    Google Scholar 

  • Hebert P D N, Stoeckle M Y, Zemlak T S, Francis C M. 2004b. Identification of birds through DNA barcodes. PLoS Biol., 2(10): e312.

    Article  Google Scholar 

  • Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature, 405(6789): 907–913.

    Google Scholar 

  • Hsu T H, Guillén Madrid A G, Burridge C P, Cheng H Y, Gwo J C. 2011. Resolution of the Acanthopagrus black seabream complex based on mitochondrial and amplified fragment–length polymorphism analyses. J. Fish Biol., 79(5): 1 182–1 192.

    Article  Google Scholar 

  • Hubert N, Hanner R. 2015. DNA barcoding, species delineation and taxonomy: a historical perspective. DNA Barcodes, 3: 44–58.

    Google Scholar 

  • Hubert N, Meyer C P, Bruggemann H J, Guérin F, Komeno R J L, Espiau B, Causse R, Williams J T, Planes S. 2012. Cryptic diversity in Indo–Pacific coral–reef fishes revealed by DNA–barcoding provides new support to the centre–ofoverlap hypothesis. PLoS One, 7(3): e28987.

    Article  Google Scholar 

  • Hubert N, Paradis E, Bruggemann H, Planes S. 2011. Community assembly and diversification in Indo–Pacific coral reef fishes. Ecol. Evol., 1(3): 229–277.

    Google Scholar 

  • Iwatsuki Y, Akazaki M, Taniguchi N. 2007. Review of the species of the genus Dentex(Perciformes: Sparidae) in the Western Pacific defined as the D. hypselosomus complex with the description of a new species, Dentex abei and a redescription of Evynnis tumifrons. Bull. Natl. Mus. Nat. Sci. Ser. A, 1(Suppl.): 29–49.

    Google Scholar 

  • Iwatsuki Y, Newman S J, Russell B C. 2015. Dentex carpenteri, a new species of deepwater seabream from Western Australia(Pisces: Sparidae). Zootaxa, 3957(1): 109–119.

    Article  Google Scholar 

  • Iwatsuki Y. 2013. Review of the Acanthopagrus latus complex (Perciformes: Sparidae) with descriptions of three new species from the Indo–West Pacific Ocean. J. Fish Biol., 83(1): 64–95.

    Article  Google Scholar 

  • Jaafar T N A M, Taylor M I, Nor S A M, de Bruyn M, Carvalho G R. 2012. DNA barcoding reveals cryptic diversity within commercially exploited Indo–Malay Carangidae (Teleosteii: Perciformes). PLoS One, 7(11): e49623.

    Article  Google Scholar 

  • Khedkar G D, Jamdade R, Naik S, David L, Haymer D. 2014. DNA Barcodes for the fishes of the Narmada, one of India’s longest rivers. PLoS One, 9(7): e101460.

    Article  Google Scholar 

  • Knebelsberger T, Landi M, Neumann H, Kloppmann M, Sell A F, Campbell P D, Laakmann S, Raupach M J, Carvalho G R, Costa F O. 2014. A reliable DNA barcode reference library for the identification of the north European shelf fish fauna. Mol. Ecol. Resour., 14(5): 1 060–1 071.

    Google Scholar 

  • Lakra W S, Goswami M, Gopalakrishnan A. 2009. Molecular identification and phylogenetic relationships of seven Indian Sciaenids(Pisces: Perciformes, Sciaenidae) based on 16S rRNA and cytochrome c oxidase subunit I mitochondrial genes. Mol. Biol. Rep., 36(5): 831–839.

    Article  Google Scholar 

  • Lavery S, Moritz C, Fielder D R. 1996. Indo–Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol. Ecol., 5(4): 557–570.

    Article  Google Scholar 

  • Lee M Y, Munroe T A, Shao K T. 2014. Description of a new cryptic, shallow–water tonguefish(Pleuronectiformes: Cynoglossidae: Symphurus ) from the western North Pacific Ocean. J. Fish Biol., 85(3): 563–585.

    Article  Google Scholar 

  • Liang R S, Zhuo X L, Yang G H, Luo D J, Zhong S, Zou J X. 2012. Molecular phylogenetic relationships of family Haemulidae(Perciformes: Percoidei) and the related species based on mitochondrial and nuclear genes. Mitochondrial DNA, 23(4): 264–277.

    Article  Google Scholar 

  • Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1 451–1 452.

    Article  Google Scholar 

  • Liu J X, Gao T X, Wu S F, Zhang Y P. 2007. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Mol. Ecol., 16(2): 275–288.

    Article  Google Scholar 

  • Liu J, Wu R X, Kang B, Ma L. 2016. Fishes of Beibu Gulf. Science Press, Beijing. p.218–226.(in Chinese)

    Google Scholar 

  • Ma H Y, Ma C Y, Li C H, Lu J X, Zou X, Gong Y Y, Wang W, Chen W, Ma L B, Xia L J. 2015. First mitochondrial genome for the red crab( Charybdis feriata ) with implication of phylogenomics and population genetics. Sci. Rep., 5: 11524.

    Article  Google Scholar 

  • Ma H Y, Ma C Y, Li X C, Xu Z, Feng N N, Ma L B. 2013. The complete mitochondrial genome sequence and gene organization of the mud crab( Scylla paramamosain ) with phylogenetic consideration. Gene, 519(1): 120–127.

    Article  Google Scholar 

  • Meier R, Zhang G Y, Ali F. 2008. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst. Biol., 57(5): 809–813.

    Article  Google Scholar 

  • Meyer C P, Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol., 3(12): e422.

    Article  Google Scholar 

  • Moritz C, Cicero C. 2004. DNA barcoding: promise and pitfalls. PLoS Biol., 2(10): e354.

    Google Scholar 

  • Nelson J S. 2006. Fishes of the World. 4 th edn. John Wiley & Sons, Inc., New Jersey. p.371.

    Google Scholar 

  • Orrell T M, Carpenter K E, Musick J A, Graves J E. 2002. Phylogenetic and biogeographic analysis of the Sparidae (Perciformes: Percoidei) from cytochrome b sequences. Copeia,(3): 618–631.

    Google Scholar 

  • Orrell T M, Carpenter K E. 2004. A phylogeny of the fish family Sparidae(Porgies) inferred from mitochondrial sequence data. Mol. Phylogenet. Evol., 32(2): 425–434.

    Article  Google Scholar 

  • Palumbi S R. 1996. Nucleic acids: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK eds. Molecular Systematics. Sinauer Associates, Massachusetts. p.205–247.

  • Paulin C D. 1990. Pagrus auratus, a new combination for the species known as “snapper” in Australasian waters (Pisces: Sparidae). New Zeal. J. Mar. Fresh. Res., 24(2): 259–265.

    Article  Google Scholar 

  • Puckridge M, Andreakis N, Appleyard S A, Ward R D. 2013. Cryptic diversity in flathead fishes(Scorpaeniformes: Platycephalidae) across the Indo–West Pacific uncovered by DNA barcoding. Mol. Ecol. Resour., 13(1): 32–42.

    Article  Google Scholar 

  • Ratnasingham S, Hebert P D N. 2007. BOLD: the barcode of life data system(http://www.barcodinglife.org). Mol. Ecol. Notes, 7(3): 355–364.

    Article  Google Scholar 

  • Sambrook J, Russell D W. 2001. Molecular Cloning: a Laboratory Manual. 3 rd edn. Cold Spring Harbor Laboratory Press, New York. p.1–372.

    Google Scholar 

  • Shao K T. 2017. The Fish Database of Taiwan.(WWW Web electronic publication). Available at: http://fishdb.sinica. edu.tw(last accessed 30 March 2017).

    Google Scholar 

  • Shen Y J, Guan L H, Wang D Q, Gan X N. 2016. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River. Ecol. Evol., 6(9): 2 702–2 713.

    Article  Google Scholar 

  • Sinniger F, Reimer J D, Pawlowski J. 2008. Potential of DNA sequences to identify zoanthids(Cnidaria: Zoantharia). Zool. Sci., 25(12): 1 253–1 260.

    Article  Google Scholar 

  • Springer V G, Williams J T. 1990. Widely distributed Pacific plate endemics and lowered sea–level. Bull. Mar. Sci., 47(3): 631–640.

    Google Scholar 

  • Steinke D, Connell A D, Hebert P D N. 2016. Linking adults and immatures of South African marine fishes. Genome, 59(11): 959–967.

    Article  Google Scholar 

  • Sun S E, Li Q, Kong L F, Yu H, Zheng X D, Yu R H, Dai L N, Sun Y, Chen J, Liu J, Ni L H, Feng Y W, Yu Z Z, Zou S M, Lin J P. 2016. DNA barcoding reveal patterns of species diversity among northwestern pacific molluscs. Sci. Rep., 6: 33 367.

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6. 0. Mol. Biol. Evol., 30(12): 2 725–2 729.

    Article  Google Scholar 

  • Turanov S V, Kartavtsev Y P, Lipinsky V V, Zemnukhov V V, Balanov A A, Lee Y H, Jeong D. 2016. DNA–barcoding of perch–like fishes(Actinopterygii: Perciformes) from fareastern seas of Russia with taxonomic remarks for some groups. Mitochondrial DNA Part A, 27(2): 1 188–1 209.

    Google Scholar 

  • Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites D. R. 2005. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool., 2: 5.

    Article  Google Scholar 

  • Voris H K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr., 27(5): 1 153–1 167.

    Article  Google Scholar 

  • Ward R D, Hanner R, Hebert P D N. 2009. The campaign to DNA barcode all fishes, FISH–BOL. J. Fish Biol., 74(2): 329–350.

    Article  Google Scholar 

  • Ward R D, Holmes B H, Yearsley G K. 2008. DNA barcoding reveals a likely second species of Asian sea bass (barramundi)( Lates calcarifer ). J. Fish Biol., 72(2): 458–463.

    Article  Google Scholar 

  • Ward R D, Holmes B H. 2007. An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I( cox1 ) in fishes. Mol. Ecol. Notes, 7(6): 899–907.

    Article  Google Scholar 

  • Ward R D, Zemlak T S, Innes B H, Last P R, Hebert P D N. 2005. DNA barcoding Australia’s fish species. Phil. Trans. Roy. Soc. B: Biol. Sci., 360(1462): 1 847–1 857.

    Article  Google Scholar 

  • Ward R D. 2009. DNA barcode divergence among species and genera of birds and fishes. Mol. Ecol. Resour., 9(4): 1 077–1 085.

    Article  Google Scholar 

  • Williams S T, Benzie J A H. 1998. Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo–West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution, 52(1): 87–99.

    Google Scholar 

  • Wu R X, Guo L J, Liu J. 2011. Genetic variation of Trichiurus lepturus and phylogenetic relationship among its closed species. Acta Zoot. Sin., 36(3): 648–655.(in Chinese with English abstract)

    Google Scholar 

  • Wu R X, Liu J, Fan J R, Zhao Y J. 2012a. Taxonomic status of the black porgy, Acanthopagrus schlegelii(Perciformes: Sparidae) inferred from mitochondrial genes. Afr. J. Biotechnol., 11(25): 6 641–6 646.

    Google Scholar 

  • Wu R X, Liu S F, Zhuang Z M, Su Y Q, Tang Q S. 2012b. Population genetic structure and demographic history of small yellow croaker, Larimichthys polyactis(Bleeker, 1877), from coastal waters of China. Afr. J. Biotechnol., 11(3): 3 493–3 496.

    Google Scholar 

  • Xia J H. 2007. Identification standard of Sparid species based on cytochrome b sequences. South China Fish. Sci., 3(1): 37–43.(in Chinese with English abstract)

    Google Scholar 

  • Xu T J, Wang R X, Wang J X. 2010. Cloning and sequence analysis of cyt b gene in four Sparidae fishes in Zhoushan sea area. South China Fish. Sci., 6(1): 30–36.(in Chinese with English abstract)

    Google Scholar 

  • Yang H R, Jiang S G. 2006. Study on genetic relationships of Sparidae by RAPD. J. Fish. China, 30(4): 469–474.(in Chinese with English abstract)

    Google Scholar 

  • Zemlak T S, Ward R D, Connell A D, Holmes B H, Hebert P D N. 2009. DNA barcoding reveals overlooked marine fishes. Mol. Ecol. Resour., 9(Suppl. 1): 237–242.

    Google Scholar 

  • Zhang J B, Hanner R. 2011. DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochem. Syst. Ecol., 39(1): 31–42.

    Article  Google Scholar 

  • Zheng L M, He J R, Lin Y S, Cao W Q, Zhang W J. 2014. 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Oceanol. Sin., 33(4): 55–76.

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. SU Junhu of Gansu Agricultural University for providing samples of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu  (刘静).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31372532, 41006084, 41276166) and the Project for Outstanding Young Teachers in Higher Education of Guangdong, China (No. Yq2013093)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Zhang, H., Liu, J. et al. DNA barcoding of the family Sparidae along the coast of China and revelation of potential cryptic diversity in the Indo- West Pacific oceans based on COI and 16S rRNA genes. J. Ocean. Limnol. 36, 1753–1770 (2018). https://doi.org/10.1007/s00343-018-7214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7214-6

Keyword

Navigation