Skip to main content
Log in

Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield (F v/F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allakhverdiev S I, Kreslavski V D, Klimov V V, Los D A, Carpentier R, Mohanty P. 2008. Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 98 (1-3): 541–550.

    Article  Google Scholar 

  • Anning T, Harris G, Geider R. 2001. Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). European Journal of Phycology, 36 (3): 233–241.

    Article  Google Scholar 

  • Babica P, Bláha L, Maršálek B. 2006. Exploring the natural role of microcystins-a review of effects on photoautotrophic organisms. Journal of Phycology, 42 (1): 9–20.

    Article  Google Scholar 

  • Berges J A, Falkowski P G. 1998. Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol ogy and Oceanogr aphy, 43 (1): 129–135.

    Article  Google Scholar 

  • Bidle K D, Falkowski P G. 2004. Cell death in planktonic, photosynthetic microorganisms. Nature Reviews Microbiology, 2 (8): 643–655.

    Article  Google Scholar 

  • Bidle K D. 2015. The Molecular ecophysiology of programmed cell death in marine phytoplankton. Annu al Rev iew of Mar ine Sci ence, 7: 341–375.

    Article  Google Scholar 

  • Bouchard J N, Purdie D A. 2011. Effect of elevated temperature, darkness, and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. Journal of Phycology, 47 (6): 1316–1325.

    Article  Google Scholar 

  • Bradford M M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248–254.

    Article  Google Scholar 

  • Dai G F, Quan C Y, Zhang X Z, Liu J, Song L R, Gan N Q. 2012. Fast removal of cyanobacterial toxin microcystin-LR by a low-cytotoxic microgel-Fe (III) complex. Water Res earch, 46 (5): 1482–1489.

    Article  Google Scholar 

  • Davis T W, Berry D L, Boyer G L, Gobler C J. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8 (5): 715–725.

    Article  Google Scholar 

  • Ding Y, Gan N Q, Li J, Sedmak B, Song L R. 2012. Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa (Chroococcales, Cyanobacteria) in a dosedependent manner. Phycologia, 51 (5): 567–575.

    Article  Google Scholar 

  • Ding Y, Song L R, Sedmak B. 2013. UVB radiation as a potential selective factor favoring microcystin producing bloom forming cyanobacteria. PLoS One, 8 (9): e73919, http://dx.doi.org/10.1371/journal.pone.0073919, [electronically published: September 2013].

    Article  Google Scholar 

  • Dokulil M T, Teubner K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia, 438 (1-3): 1–12.

    Article  Google Scholar 

  • Duan H T, Ma R H, Zhang Y C, Loiselle S A. 2014. Are algal blooms occurring later in Lake Taihu? Climate local effects outcompete mitigation prevention. Journal of Plankton Research, 36 (3): 866–871.

    Article  Google Scholar 

  • Dziallas C, Grossart H P. 2011. Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS One, 6 (9): e25569, http://dx.doi.org/10.1371/journal. pone.0025569.

    Article  Google Scholar 

  • Franklin D J. 2014. Explaining the causes of cell death in cyanobacteria: what role for asymmetric division? Journal of Plankton Res earch, 36 (1): 11–17.

  • Furusato E, Asaeda T, Manatunge J. 2004. Tolerance for prolonged darkness of three phytoplankton species, Microcystis aeruginosa (Cyanophyceae), Scenedesmus quadricauda (Chlorophyceae), and Melosira ambigua (Bacillariophyceae). Hydrobiologia, 527 (1): 153–162.

    Article  Google Scholar 

  • Guo L S, Zhang J, Wu J et al. 2012. Morphological and biochemical changes of Microcystis aeruginosa PCC7806 subjected to dark and oxygen limitation. Acta Microbiol ogica Sinica, 52 (2): 228–235. (in Chinese)

    Google Scholar 

  • Jewson D H. 1976. The interaction of components controlling net phytoplankton photosynthesis in a well-mixed lake (Lough Neagh, Northern Ireland). Freshwater Biol ogy, 6 (6): 551–576.

    Article  Google Scholar 

  • Jochem F J. 1999. Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate. Mar ine Biol ogy, 135 (4): 721–728.

    Article  Google Scholar 

  • LeBlanc Renaud S, Pick F R, Fortin N. 2011. Effect of light intensity on the relative dominance of toxigenic and nontoxigenic strains of Microcystis aeruginosa. Appl ied and Environ mental Microb iology, 77 (19): 7016–7022.

    Article  Google Scholar 

  • Lei L M, Wu Y S, Gan N Q, Song L R. 2004. An ELISA-like time-resolved fluorescence immunoassay for microcystin detection. Clin ica Chim ica Acta, 348 (1-2): 177–180.

    Article  Google Scholar 

  • Mikula P, Zezulka S, Jancula D et al. 2012. Metabolic activity and membrane integrity changes in Microcystis aeruginosa -new findings on hydrogen peroxide toxicity in cyanobacteria. European Journal of Phycology, 47 (3): 195–206.

    Article  Google Scholar 

  • Moon Y J, Kim S I, Chung Y H. 2012. Sensing and responding to UV-A in cyanobacteria. International Journal of Molecular Sciences, 13 (12): 16303–16332.

    Article  Google Scholar 

  • Paerl H W, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Env ironmental Microbiol ogy Rep orts, 1 (1): 27–37.

    Article  Google Scholar 

  • Paerl H W, Otten T G. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb ial Ecol ogy, 65 (4): 995–1010.

    Article  Google Scholar 

  • Popels L C, Mac Intyre H L, Warner M E, Zhang Y H, Hutchins D A. 2007. Physiological responses during dark survival and recovery in Aureococcus anophagefferens (Pelagophyceae). J ournal of Phycol ogy, 43 (1): 32–42.

    Article  Google Scholar 

  • Reynolds C S, Jaworski G H M, Cmiech H A, Leedale G F. 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Emend. Elenkin. Philosophical Transactions of the Royal Society of London.

  • Series B, Biological Sciences, 293 (1068): 419–477.

  • Richards F A, Thompson T G. 1952. The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. J ournal of Mar ine Res earch, 11: 156–172.

    Google Scholar 

  • Ross C, Santiago-Vázquez L, Paul V. 2006. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat ic Toxicol ogy, 78 (1): 66–73.

    Article  Google Scholar 

  • Sabour B, Sbiyyaa B, Loudiki M, Oudra B, Belkoura M, Vasconcelos V. 2009. Effect of light and temperature on the population dynamics of two toxic bloom forming Cyanobacteria-Microcystis ichthyoblabe and Anabaena aphanizomenoides. Chem istry and Ecology, 25 (4): 277–284.

    Article  Google Scholar 

  • Sakai H, Oguma K, Katayama H, Ohgaki S. 2007. Effects of low or medium-pressure UV irradiation on the release of intracellular microcystin. Water Res earch, 41 (15): 3458–3464.

    Article  Google Scholar 

  • Sakamoto T, Bryant D A. 1999. Nitrate transport and not photoinhibition limits growth of the freshwater cyanobacterium Synechococcus species PCC 6301 at low temperature. Plant Physiol ogy, 119 (2): 785–794.

    Article  Google Scholar 

  • Schatz D, Keren Y, Vardi A, Sukenik A, Carmeli S, Börner T, Dittmann E, Kaplan A. 2007. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ mental Microbiol ogy, 9 (4): 965–970.

    Article  Google Scholar 

  • Segovia M, Haramaty L, Berges J A, Falkowski P G. 2003. Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol ogy, 132 (1): 99–105.

    Google Scholar 

  • Sta C, Ledoigt S, Ferjani E, Goupil P. 2012. Exposure of Vicia faba to sulcotrione pesticide induced genotoxicity. Pesticide Biochemistry and Physiology, 103 (1): 9–14.

    Article  Google Scholar 

  • Tan X M, Zhu T, Shen S, Yin C T, Gao H, Xu X D. 2011. The role of Rbp1 in the acquired chill-light tolerance of cyanobacteria. J ournal of Bacteriol ogy, 193 (11): 2675–2683.

    Article  Google Scholar 

  • White S H, Duivenvoorden L J, Fabbro L D. 2005. A decisionmaking framework for ecological impacts associated with the accumulation of cyanotoxins (cylindrospermopsin and microcystin). Lakes & Reservoirs: Research & Management, 10 (1): 25–37.

    Article  Google Scholar 

  • Wu Z X, Song L R, Li R H. 2008. Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus. Hydrobiologia, 596 (1): 47–55.

    Article  Google Scholar 

  • Yang Y, Yin C T, Li W Z, Xu X D. 2008. a-Tocopherol is essential for acquired chill-light tolerance in the cyanobacterium Synechocystis sp. Strain PCC 6803. J ournal of Bacteriology, 190 (5): 1554–1560.

    Article  Google Scholar 

  • Yang Z, Kong F X, Shi X L, Yu Y, Zhang M. 2015. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain. Journal of Hazardous Materials, 283: 447–453.

    Article  Google Scholar 

  • Yin C T, Li W Z, Du Y, Kong R Q, Xu X D. 2007. Identification of a gene, ccr -1 (sll1242), required for chill-light tolerance and growth at 15°C in Synechocystis sp. PCC 6803. Microbiol ogy, 153 (Pt 4): 1261–1267.

    Google Scholar 

  • Zhang M, Duan H T, Shi X L, Yu Y, Kong F X. 2012a. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Res earch, 46 (2): 442–452.

    Article  Google Scholar 

  • Zhang M, Shi X L, Yu Y, Kong F X. 2011. The acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa. J ournal of Phycol ogy, 47 (3): 524–532.

    Article  Google Scholar 

  • Zhang M, Yu Y, Yang Z, Kong F X. 2012b. Photochemical responses of phytoplankton to rapid increasingtemperature process. Phycological Research, 60 (3): 199–207.

    Article  Google Scholar 

  • Zilliges Y, Kehr J C, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Börner T, Dittmann E. 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One, 6 (3): e17615, http://dx.doi. org/10.1371/journal.pone.0017615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li  (李林).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31070355, 31370418)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Gan, N., Liu, J. et al. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition. Chin. J. Ocean. Limnol. 35, 313–323 (2017). https://doi.org/10.1007/s00343-016-5215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5215-x

Keywords

Navigation