Skip to main content
Log in

Impacts of salinity parameterizations on temperature simulation over and in a hypersaline lake

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this paper, we introduced parameterizations of the salinity effects (on heat capacity, thermal conductivity, freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecasting model coupled with the Community Land Model (WRF-CLM). This was done to improve temperature simulation over and in a saline lake and to test the contributions of salinity effects on various water properties via sensitivity experiments. The modified lake scheme consists of the lake module in the CLM model, which is the land component of the WRF-CLM model. The Great Salt Lake (GSL) in the USA was selected as the study area. The simulation was performed from September 3, 2001 to September 30, 2002. Our results show that the modified WRF-CLM model that includes the lake scheme considering salinity effects can reasonably simulate temperature over and in the GSL. This model had much greater accuracy than neglecting salinity effects, particularly in a very cold event when that effect alters the freezing point. The salinity effect on saturated vapor pressure can reduce latent heat flux over the lake and make it slightly warmer. The salinity effect on heat capacity can also make lake temperature prone to changes. However, the salinity effect on thermal conductivity was found insignificant in our simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali H, Madramootoo C A, Gwad S A. 2001. Evaporation model of Lake Qaroun as influenced by lake salinity. Irrig. Drain., 50(1): 9–17.

    Article  Google Scholar 

  • Bennett N D, Croke B F W, Guariso G, Guillaume J H A, Hamilton S H, Jakeman A J, Marsili-Libelli S, Newham L T H, Norton J P, Perrin C, Pierce S A, Robson B, Seppelt R, Voinov A A, Fath B D, Andreassian V. 2013. Characterising performance of environmental models. Environ. Modell. Softw, 40: 1–20, http://dx.doi.org/10.1016/j.envsoft.2012.09.011.

    Article  Google Scholar 

  • Bonan G B. 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8(11): 2 691–2 704.

    Article  Google Scholar 

  • Brock T D. 1975. Salinity and the ecology of dunaliella from Great Salt Lake. J. Gen. Microbiol., 89: 285–292.

    Article  Google Scholar 

  • Calder I R, Neal C. 1984. Evaporation from Saline Lakes—a combination equation approach. Hydrol. Sciences J., 29(1): 89–97.

    Article  Google Scholar 

  • Carpenter D M. 1993. The lake effect of the Great Salt Lake—overview and forecast problems. Weather Forecast, 8(2): 181–193.

    Article  Google Scholar 

  • Cohen P. 1989. The ASME Handbook on Water Technology for Thermal Systems. American Society of Mechanical Engineers, New York. 1900p.

    Google Scholar 

  • Crosman E T, Horel J D. 2009. MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ., 113(1): 73–81.

    Article  Google Scholar 

  • Crump B C, Kling G W, Bahr M, Hobbie J E. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microb., 69(4): 2 253–2 268, http://dx.doi.org/10.1128/Aem.69.4.2253-2268.2003.

    Article  Google Scholar 

  • Diaz X, Johnson W P, Naftz D L. 2009. Selenium mass balance in the Great Salt Lake, Utah. Sci. Total. Environ., 407(7): 2 333–2 341.

    Article  Google Scholar 

  • Dickson D R, Yepson J H, Hales J V. 1965. Saturated vapor pressures over Great Salt Lake brine. J. Geophys. Res., 70: 500–503.

    Article  Google Scholar 

  • Diguilio R M, Teja A S. 1992. Thermal conductivity of aqueous salt solutions at high temperatures and high concentrations. Ind. Eng. Chem. Res., 31(4): 1 081–1 085.

    Article  Google Scholar 

  • Dudhia J. 1989. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46(20): 3 077–3 107.

    Article  Google Scholar 

  • Flatau P J, Walko R L, Cotton W R. 1992. Polynomial fits to saturation vapor-pressure. J. Appl. Meteorol., 31(12): 1 507–1 513, http://dx.doi.org/10.1175/1520-0450(1992)031<1507:Pftsvp>2.0.Co;2.

    Article  Google Scholar 

  • Henderson-Sellers B. 1985. New formulation of eddy diffusion thermocline models. Appl. Math. Model., 9: 441–446.

    Article  Google Scholar 

  • Horel J, Splitt M, Dunn L, Pechmann J, White B, Ciliberti C, Lazarus S, Slemmer J, Zaff D, Burks J. 2002. Mesowest: cooperative mesonets in the western United States. B. Am. Meteorol. Soc., 83(2): 211–225.

    Article  Google Scholar 

  • Hostetler S W, Bartlein P J. 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res., 26(10): 2 603–2 612.

    Google Scholar 

  • Hostetler S W, Bates G T, Giorgi F. 1993. Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98(D3): 5 045–5 057.

    Article  Google Scholar 

  • Hostetler S W, Giorgi F, Bates G T, Bartlein P J. 1994. Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Sci., 263(5147): 665–668.

    Article  Google Scholar 

  • Kain J S. 2004. The Kain-Fritsch convective parameterization: an update. J. Appl. Meteorol., 43(1): 170–181.

    Article  Google Scholar 

  • Krinner G. 2003. Impact of lakes and wetlands on boreal climate. J. Geophys. Res., 108(D16), http://dx.doi.org/10.1029/2002jd002597.

    Google Scholar 

  • Lofgren B M. 1997. Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10: 2 847–2 858.

    Article  Google Scholar 

  • Long Z, Perrie W, Gyakum J, Caya D, Laprise R. 2007. Northern lake impacts on local seasonal climate. J. Hydrometeorol., 8(4): 881–896.

    Article  Google Scholar 

  • Low R D H. 1969. A generalized equation for the solution effect in droplet growth. J. Atmos. Sci., 26: 608–611.

    Article  Google Scholar 

  • Magnuson J J, Bowser C J. 1990. A network for long-term ecological research in the United States. Freshwater Biol., 23(1): 137–143.

    Article  Google Scholar 

  • Martynov A, Sushama L, Laprise R, Winger K, Dugas B. 2012. Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America. Tellus. A, 64, http://dx.doi.org/10.3402/tellusa.v64i0.16226.

  • Martynov A, Sushama L, Laprise R. 2010. Simulation of temperate freezing lakes by one-dimensional lake models: performance assessment for interactive coupling with regional climate models. Boreal Environ. Res., 15(2): 143–164.

    Google Scholar 

  • McDonald M E, Hershey A E, Miller M C. 1996. Global warming impacts on lake trout in arctic lakes. Limnol. Oceanogr., 41(5): 1 102–1 108.

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran P C, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery E H, Ek M B, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. B. Am. Meteorol. Soc., 87(3): 343–360, http://dx.doi.org/10.1175/Bams-87-3-343.

    Article  Google Scholar 

  • Mishra V, Cherkauer K A, Bowling L C. 2011. Changing thermal dynamics of lakes in the Great Lakes region: role of ice cover feedbacks. Global Planet Change, 75(3–4): 155–172.

    Article  Google Scholar 

  • Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14): 16 663–16 682.

    Article  Google Scholar 

  • Mooij W M, Domis L N D S, Hulsmann S. 2008. The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. J. Sea Res., 60(1–2): 32–43, http://dx.doi.org/10.1016/j.seares.2008.03.002.

    Article  Google Scholar 

  • Morrison H, Curry J A, Khvorostyanov V I. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62(6): 1 665–1 677.

    Article  Google Scholar 

  • Naftz D L, Millero F J, Jones B F, Green W R. 2011. An equation of state for hypersaline water in Great Salt Lake, Utah, USA. Aquat. Geochem., 17(6): 809–820, http://dx.doi.org/10.1007/s10498-011-9138-z.

    Article  Google Scholar 

  • Noh Y, Cheon W G, Hong S Y, Raasch S. 2003. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundlay. Meteorol., 107(2): 401–427.

    Article  Google Scholar 

  • Notz D, Worster M G. 2008. In situ measurements of the evolution of young sea ice. J. Geophys. Res., 113: C03001, http://dx.doi.org/10.1029/2007jc004333.

    Google Scholar 

  • Oleson K W, Dai Y, Bonan G, Bosilovich M, Dickson R, Dirmeyer P. 2004. Technical Description of the Community Land Model. http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/index.html.174p.

    Google Scholar 

  • Oleson K W, Niu G Y, Yang Z L, Lawrence D M, Thornton P E, Lawrence P J, Stockli R, Dickinson R E, Bonan G B, Levis S, Dai A, Qian T. 2008. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113: G01021, http://01010.01029/02007JG000563.

    Google Scholar 

  • Onton D J, Steenburgh W J A. 2001. Diagnostic and sensitivity studies of the 7 December 1998 Great Salt Lake-effect snowstorm. Mon. Weather. Rev., 129(6): 1 318–1 338.

    Article  Google Scholar 

  • Oroud I M. 1995. Effects of salinity upon evaporation from pans and shallow lakes near the Dead Sea. Theor. Appl. Climatol., 52(3–4): 231–240.

    Article  Google Scholar 

  • Ozbek H, Phillips S L. 1980. Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C. J. Chem. Eng. Data., 25: 263–267.

    Article  Google Scholar 

  • Perroud M, Goyette S, Martynov A, Beniston M, Anneville O. 2009. Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models. Limnol. Oceanogr., 54(5): 1 574–1 594.

    Article  Google Scholar 

  • Skamarock W C, Klemp J B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227(7): 3 465–3 485.

    Article  Google Scholar 

  • Small E E, Giorgi F, Sloan L C, Hostetler S. 2001. The effects of desiccation and climatic change on the hydrology of the Aral Sea. J. Climate, 14(3): 300–322, http://dx.doi.org/10.1175/1520-0442(2001)013〈0300:Teodac〉2.0.Co;2.

    Article  Google Scholar 

  • Steenburgh W J, Halvorson S F, Onton D J. 2000. Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Weather. Rev., 128(3): 709–727.

    Article  Google Scholar 

  • Steenburgh W J, Onton D J. 2001. Multiscale analysis of the 7 December 1998 Great Salt Lake-effect snowstorm. Mon. Weather. Rev., 129(6): 1 296–1 317.

    Article  Google Scholar 

  • Stephens D W. 1990. Changes in lake levels, salinity and the biological community of Great-Salt-Lake (Utah, USA), 1847–1987. Hydrobiologia, 197: 139–146, http://dx.doi.org/10.1007/Bf00026946.

    Article  Google Scholar 

  • Subin Z M, Riley W J, Jin J, Christianson D S, Torn M S, Kueppers L M. 2011. Ecosystem feedbacks to climate change in California: development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5). Earth Interact., 15: 1–38, http://dx.doi.org/10.1175/2010EI331.1.

    Article  Google Scholar 

  • Sun H, Feistel R, Koch M, Markoe A. 2008. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep Sea. Res. I, 55: 1 304–1 310.

    Article  Google Scholar 

  • UNESCO. 1983. Algorithms for computation of fundamental properties of seawater (Access online via http://unesdoc.unesco.org/images/0005/000598/059832eb.pdf).

    Google Scholar 

  • Wen L, Jin J. 2010a. Modeling and Analysis of the Impact of Great Salt Lake on Local Climate, paper presented at Spring Runoff Conference and Western Snow Conference, Logan, USA, Apr. p.20–21.

    Google Scholar 

  • Wen L, Jin J. 2010b. Modeling of the impacts of the Great Salt Lake salinity on local climate with the Weather Research and Forecasting model, paper presented at The 11th WRF workshop, Boulder, USA, Jun. p.21–25.

    Google Scholar 

  • Yusufova V D, Pepinov R I, Nikolaev V A, Guseinov G M. 1975. Thermal conductivity of aqueous solutions of NaCl. J. Eng. Phys. Therm., 29: 1 225–1 229.

    Article  Google Scholar 

  • Zeng X, Shaikh M, Dai Y, Dickinson R E, Myneni R. 2002. Coupling of the common land model to the NCAR community climate model. J. Climate, 15: 1 832–1 854.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiang Chen  (陈世强).

Additional information

Supported by the National Natural Science Foundation of China (No. 41130961), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (No. XDB03030300), the National Natural Science Foundation of China (Nos. 41475011, 41275014), and the Visiting Scholars Program of the Public School Study Abroad Project of Chinese Academy of Sciences (No. 2008-No.136)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Nagabhatla, N., Zhao, L. et al. Impacts of salinity parameterizations on temperature simulation over and in a hypersaline lake. Chin. J. Ocean. Limnol. 33, 790–801 (2015). https://doi.org/10.1007/s00343-015-4153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4153-3

Keyword

Navigation