Skip to main content
Log in

Molecular cloning, characterization and expression profiles of thioredoxin 1 and thioredoxin 2 genes in Mytilus galloprovincialis

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Thioredoxin (Trx) proteins are involved in many biological processes especially the regulation of cellular redox homeostasis. In this study, two Trx cDNAs were cloned from the mussel Mytilus galloprovincialis using rapid amplifi cation of cDNA ends-polymerase chain reaction (RACE-PCR). The two cDNAs were named MgTrx1 and MgTrx2, respectively. The open reading frames of MgTrx1 and MgTrx2 were 318 and 507 base pairs (bp) and they encoded proteins of 105 and 168 amino acids with estimated molecular masses of 11.45 and 18.93 kDa, respectively. Sequence analysis revealed that both proteins possessed the conserved active site dithiol motif Cys-Gly-Pro-Cys. In addition, MgTrx2 also possessed a putative mitochondrial targeting signal suggesting that it is located in the mitochondria. Quantitative real-time polymerase chain reaction (qPCR) revealed that both MgTrx1 and MgTrx2 were constitutively expressed in all tissues examined. The MgTrx1 transcript was most abundant in hemocytes and gills, whereas the MgTrx2 transcript was most abundant in gonad, hepatopancreas, gill and hemocytes. Following Vibrio anguillarum challenge, the expression of MgTrx1 was up-regulated and reached its peak, at a value 10-fold the initial value, at 24 h. Subsequently, expression returned back to the original level. In contrast, the expression level of MgTrx2 was down-regulated following bacterial stimulation, with one fi fth of the control level evident at 12 h post challenge. These results suggest that MgTrx1 and MgTrx2 may play important roles in the response of M. galloprovincialis to bacterial challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aispuro-Hernandez E, Garcia-Orozco K D, Muhlia-Almazan A, del-Toro-Sanchez L, Robles-Sanchez R M, Hernandez J, Gonzalez-Aguilar G, Yepiz-Plascencia G, Sotelo-Mundo R R. 2008. Shrimp thioredoxin is a potent antioxidant protein. Comp. Biochem. Phys. C, 148(1): 94–99.

    Google Scholar 

  • Bogdan C, Röllinghoff M, Diefenbach A. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specifi c immunity. Curr. Opin. Immunol., 12(1): 64–76.

    Article  Google Scholar 

  • Ciacci C, Betti M, Canonico B, Citterio B, Roch P, Canesi L. 2010. Specifi city of anti-Vibrio immune response through p38 MAPK and PKC activation in the hemocytes of the mussel Mytilus galloprovincialis. J. Invertebr. Pathol., 105(1): 49–55.

    Article  Google Scholar 

  • Cavallo R A. Stabili L. 2002. Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res., 36(15): 3 719–3 726.

    Article  Google Scholar 

  • Claros M G, Vincens P. 1996. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem., 241(3): 779–786.

    Article  Google Scholar 

  • Costa M M, Prado-Alvarez M, Gestal C, Li H, Roch P, Novoa B, Figueras A. 2009. Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) hemocytes against pathogen-associated molecular patterns and bacteria. Fish Shellfi sh Immun., 26(3): 515–523.

    Article  Google Scholar 

  • De Zoysa M, Pushpamali W A, Whang I, Kim S J, Lee J. 2008. Mitochondrial thioredoxin-2 from disk abalone (Haliotis discus discus): molecular characterization, tissue expression and DNA protection activity of its recombinant protein. Comp. Biochem. Phys. B, 149(4): 630–639.

    Article  Google Scholar 

  • Didier C, Kerblat I, Drouet C, Favier A, Béani J C, Richard M J. 2001. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fi broblasts. Free Radical Bio. Med., 31(5): 585–598.

    Article  Google Scholar 

  • FAO. 2009. http://www.fao.org/fishery/culturedspecies/Mytilus_galloprovincialis/en.

  • Ferre F, Clote P. 2005. DiANNA: a web server for disulfi de connectivity prediction. Nucleic. Acids Res., 33(suppl 2): W230–W232.

    Article  Google Scholar 

  • Goedken M, De Guise S. 2004. Flow cytometry as a tool to quantify oyster defence mechanisms. Fish Shellfi sh Immun., 16: 539–552.

    Article  Google Scholar 

  • Gomez-Leon J, Villamil L, Lemos M L, Novoa B, Figueras A. 2005. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquaculture carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl. Environ. Microbiol., 71: 98–104.

    Article  Google Scholar 

  • Hansen J M, Zhang H, Jones D P. 2006. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-α-induced reactive oxygen species generation, NF-κB activation, and apoptosis. Toxicol Sci., 91(2): 643–650.

    Article  Google Scholar 

  • Hirota K, Nakamura H, Masutani H, Yodoi J. 2002. Thioredoxin superfamily and thioredoxin-inducing agents. Ann. Ny. Acad. Sci., 957(1): 189–199

    Article  Google Scholar 

  • Hoarau P, Damiens G, Roméo M, Gnassia-Barelli M, Bebianno M J. 2006. Cloning and expression of a GST-pi gene in Mytilus galloprovincialis. Attempt to use the GST-pi transcript as a biomarker of pollution. Comp. Biochem. Phys. C, 143(2): 196–203.

    Google Scholar 

  • Holmgren A. 1985. Thioredoxin. Annu. Rev. Biochem., 54(1): 237–271.

    Article  Google Scholar 

  • Jeffries V E. 1982. Three Vibrio strains pathogenic to larvae of Crassostrea gigas and Ostrea edulis. Aquaculture, 29: 201–226.

    Article  Google Scholar 

  • Kolaiti R M, Lucas J M, Kouyanou-Koutsoukou S. 2009. Molecular cloning of the ribosomal P-proteins MgP1, MgP2, MgP0, and superoxide dismutase (SOD) in the mussel Mytilus galloprovincialis and analysis of MgP0 at stress conditions. Gene, 430(1–2): 77–85.

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform., 9(4): 299–306.

    Article  Google Scholar 

  • Leppä S, Pirkkala L, Chow S C, Eriksson J E, Sistonen L. 1997. Thioredoxin is transcriptionally induced upon activation of heat shock factor 2. J. Biol. Chem., 272(48): 30 400–30 404.

    Article  Google Scholar 

  • Letunic I, Doerks T, Bork P. 2009. SMART 6: recent updates and new developments. Nucleic. Acids Res., 37(suppl 1): D229–D232.

    Article  Google Scholar 

  • Miranda-Vizuete A, Damdimopoulos A E, Gustafsson J A, Spyrou G. 1997. Cloning, expression, and characterization of a novel Escherichia coli Thioredoxin. J. Biol. Chem., 272(49): 30 841–30 847.

    Article  Google Scholar 

  • Moriarty-Craige S E, Jones D P. 2004. Extracellular thiols and thiol/disulfi de redox in metabolism. Annu. Rev. Nutr., 24: 481–509.

    Article  Google Scholar 

  • Mu C, Zhao J, Wang L, Song L, Song X, Zhang H, Qiu L, Gai Y, Cui Z. 2009. A thioredoxin with antioxidant activity identifi ed from Eriocheir sinensis. Fish Shellfi sh Immun., 26(5): 716–723.

    Article  Google Scholar 

  • Nakamura H, Nakamura K, Yodoi J. 1997. Redox regulation of cellular activation. Annu. Rev. Immunol., 15(1): 351–369.

    Article  Google Scholar 

  • Paillard C, Le Roux F, Borrego J. 2004. Bacterial diseases in marine bivalves, a review of recent studies: trend and evolution. Aquat. Living Resour., 17: 477–498.

    Article  Google Scholar 

  • Powis G, Briehl M, Oblong J. 1995. Redox signalling and the control of cell growth and death. Pharmacol. Therapeut., 68(1): 149–173.

    Article  Google Scholar 

  • Ren Q, Zhang R R, Zhao X F, Wang J X. 2010. A thioredoxin response to the WSSV challenge on the Chinese white shrimp, Fenneropenaeus chinensis. Comp. Biochem. Phys. C, 151(1): 92–98.

    Google Scholar 

  • Revathy K S, Umasuthan N, Lee Y, Whang I, Kim H C, Lee J. 2012. Cytosolic thioredoxin from Ruditapes philippinarum: Molecular cloning, characterization, expression and DNA protection activity of the recombinant protein. Dev. Comp. Immunol., 36(1): 85–92.

    Article  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J. 2001. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol. Biochem., 11(4): 173–186.

    Article  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5): 415–418.

    Article  Google Scholar 

  • Song L, Wang L, Qui L, Zhang H. 2010. Bivalve immunity. Adv. Exp. Med. Biol. — Invertebrate Immunity, 708: 44–65.

    Article  Google Scholar 

  • Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J A. 1997. Cloning and expression of a novel mammalian thioredoxin. J. Biol. Chem., 272(5): 2 936–2 941.

    Google Scholar 

  • Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, Nishiyama A, Takeda S, Wada H, Spyrou G. 2002. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J., 21(7): 1 695–1 703.

    Article  Google Scholar 

  • Tiscar P, Mosca F. 2004. Defense mechanisms in farmed marine molluscs. Vet. Res. Commun., 28: 57–62.

    Article  Google Scholar 

  • Umasuthan N, Saranya Revathy K, Lee Y, Whang I, Lee J. 2012. Mitochondrial thioredoxin-2 from Manila clam (Ruditapes philippinarum) is a potent antioxidant enzyme involved in antibacterial response. Fish Shellfi sh Immun., 32(4): 513–523.

    Article  Google Scholar 

  • Venier P, Varotto L, Rosani U, Millino C, Celegato B, Bernante F, Lanfranchi G, Novoa B, Roch P, Figueras A, Pallavicini A. 2011. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC genomics, 12: 69.

    Article  Google Scholar 

  • Wahl MC, Irmler A, Hecker B, Schirmer RH, Becker K. 2005. Comparative structural analysis of oxidized and reduced thioredoxin from Drosophila melanogaster. J. Mol. Biol., 345: 1 119–1 130.

    Article  Google Scholar 

  • Wang Q, Ning X, Chen L, Pei D, Zhao J, Zhang L, Liu X. Wu H. 2011. Responses of thioredoxin 1 and thioredoxinrelated protein 14 mRNAs to cadmium and copper stresses in Venerupis philippinarum. Comp. Biochem. Phys. C, 154(3): 154–160.

    Google Scholar 

  • Watson W H. 2004. Thioredoxin and its role in toxicology. Toxicol. Sci., 78(1): 3–14.

    Article  Google Scholar 

  • Zhang G, Li X, Xue Z. 1999. Potential reasons and controlling strategies of mollusk dramatic death in China. Chinese F ishery, 9: 34–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Zhao  (赵建民) or Huifeng Wu  (吴惠丰).

Additional information

Supported by the National Natural Science Foundation of China (No. 31172388), the 100 Talents Program of the Chinese Academy of Sciences, and the Key Laboratory for Ecological Environment in Coastal Areas (201011), State Oceanic Administration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Ning, X., Pei, D. et al. Molecular cloning, characterization and expression profiles of thioredoxin 1 and thioredoxin 2 genes in Mytilus galloprovincialis . Chin. J. Ocean. Limnol. 31, 493–503 (2013). https://doi.org/10.1007/s00343-013-2234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2234-8

Keywords

Navigation