Skip to main content
Log in

Studies of the low- and high-order optical nonlinearities of mercury selenide quantum dots using femtosecond pulses

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The nonlinear optical properties of the synthesized mercury selenide quantum dots (HgSe QDs) were investigated using near-infrared femtosecond pulses (1030 nm, 40 fs). The two-photon absorption in the HgSe QD suspension was analyzed. The third-harmonic generation was studied using the 70-nm-thick HgSe QDs film. The high-order harmonics generation up to the 37th order in the laser-induced plasmas containing HgSe QDs was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper is not publicly available at this time but may be obtained from the corresponding author upon reasonable request.

References

  1. T. Frecker, D. Bailey, X. Arzeta-Ferrer, J. McBride, S.J. Rosenthal, ESC J. Solid State Sci. Technol. 5, R3019–R3031 (2016)

    Article  Google Scholar 

  2. W. Sukkabot, J. Computat, Electronics 15, 756–762 (2016)

    Google Scholar 

  3. G. Shen, P. Guyot-Sionnest, J. Phys. Chem. C 120, 11744–11753 (2016)

    Article  Google Scholar 

  4. D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, W.W. Webb, Science 300(5624), 1434–1436 (2003)

    Article  ADS  Google Scholar 

  5. I.D. Skurlov, E.A. Ponomareva, A.O. Ismagilov, S.E. Putilin, I.A. Vovk, A.V. Sokolova, A.N. Tcypkin, A.P. Litvin, Photonics 7, 39 (2020)

    Article  Google Scholar 

  6. M. Yan, W.-D. Yao, W. Liu, R.-L. Tang, S.-P. Guo, Inorg. Chem. 60, 16917–16921 (2021)

    Article  Google Scholar 

  7. A. Bundulis, I.A. Shuklov, V.V. Kim, A. Mardini, J. Grube, J. Alnis, A.A. Lizunova, V.F. Razumov, R.A. Ganeev, Nanomater. 11, 3351 (2021)

    Article  Google Scholar 

  8. D.D. Torres, S. Pamidighantam, P.K. Jain, J. Phys. Chem. C 124, 10344–10352 (2020)

    Article  Google Scholar 

  9. C. Livache, B. Martinez, N. Goubet, C. Gréboval, J. Qu, A. Chu, S. Royer, S. Ithurria, M.G. Silly, B. Dubertret, E. Lhuillier, Nat. Commun. 10, 2125 (2019)

    Article  ADS  Google Scholar 

  10. V. Grigel, L.K. Sagar, K. De Nolf, Q. Zhao, A. Vantomme, J. De Roo, I. Infante, Z. Hens, Chem. Mater. 30, 7637–7647 (2018)

    Article  Google Scholar 

  11. M. Green, H. Mirzai, J. Mater. Chem. C 6, 5097–5112 (2018)

    Article  Google Scholar 

  12. E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X.Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, B. Dubertret, Nano Lett. 16, 1282–1286 (2016)

    Article  ADS  Google Scholar 

  13. R.A. Ganeev, G.S. Boltaev, V.V. Kim, K. Zhang, A.I. Zvyagin, M.S. Smirnov, O.V. Ovchinnikov, P.V. Redkin, M. Wöstmann, H. Zacharias, C. Guo, Opt. Express 26, 35013–35025 (2018)

    Article  ADS  Google Scholar 

  14. R.A. Ganeev, I.A. Shuklov, A.I. Zvyagin, D.V. Dyomkin, M.S. Smirnov, O.V. Ovchinnikov, A.A. Lizunova, A.M. Perepukhov, V.S. Popov, V.F. Razumov, Opt. Express 29, 16710–16726 (2021)

    Article  ADS  Google Scholar 

  15. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  16. S. Srivastava, N.A. Kotov, Accounts Chem. Res. 41, 1831–1841 (2008)

    Article  Google Scholar 

  17. Z. Deng, K.S. Jeong, P. Guyot-Sionnest, ACS Nano 8, 11707–11714 (2014)

    Article  Google Scholar 

  18. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Phys. B 41, 045603 (2008)

    Article  ADS  Google Scholar 

  19. H. Singhal, P.A. Naik, M. Kumar, J.A. Chakera, P.D. Gupta, J. Appl. Phys. 115, 033104 (2014)

    Article  ADS  Google Scholar 

  20. Y. Fu, R.A. Ganeev, G.S. Boltaev, S.K. Maurya, V.V. Kim, C. Zhao, A. Rout, C. Guo, Nanophot. 8, 849–858 (2019)

    Article  Google Scholar 

  21. R.A. Ganeev, Photonics 9, 757 (2022)

    Article  Google Scholar 

  22. C. Vozzi, M. Nisoli, J.-P. Caumes, G. Sansone, S. Stagira, S. De Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, G. Tondello, Appl. Phys. Lett. 86, 111121 (2005)

    Article  ADS  Google Scholar 

  23. H. Ruf, C. Handschin, R. Cireasa, N. Thiré, A. Ferré, S. Petit, D. Descamps, E. Mével, E. Constant, V. Blanchet, B. Fabre, Y. Mairesse, Phys. Rev. Lett. 110, 083902 (2013)

    Article  ADS  Google Scholar 

  24. G.S. Boltaev, V.V. Kim, V.S. Yalishev, M. Iqbal, N.A. Abbasi, R.A. Ganeev, A.S. Alnaser, Photonics 7, 66 (2020)

    Article  Google Scholar 

  25. G.S. Boltaev, R.A. Ganeev, V.V. Kim, N.A. Abbasi, M. Iqbal, A.S. Alnaser, Opt. Express 28, 18859–18875 (2020)

    Article  ADS  Google Scholar 

  26. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

  27. R.A. Ganeev, G.S. Boltaev, V.V. Kim, M. Venkatesh, A.I. Zvyagin, M.S. Smirnov, O.V. Ovchinnikov, M. Wöstmann, H. Zacharias, C. Guo, J. Appl. Phys. 126, 193103 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

American University of Sharjah FRG grant (FRG19-L-S61), European Regional Development Fund (1.1.1.5/19/A/003), World Bank Project (REP-04032022-206), Russian Science Foundation (Project No 23-23-00300).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RAG, ASA; methodology: GSB, IAS; RAG; formal analysis and investigation: GSB, IAS, AAL, DVD, TM, AAB; writing—original draft preparation: GSB; writing—review and editing: RAG, IAS, ASA.

Corresponding authors

Correspondence to R. A. Ganeev or I. A. Shuklov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltaev, G.S., Ganeev, R.A., Shuklov, I.A. et al. Studies of the low- and high-order optical nonlinearities of mercury selenide quantum dots using femtosecond pulses. Appl. Phys. B 129, 100 (2023). https://doi.org/10.1007/s00340-023-08041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08041-8

Navigation