Skip to main content
Log in

Covariant formulation of spin optics for electromagnetic waves

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We develop geometric optics expansion up to the subleading order for circularly polarized electromagnetic waves on curved spacetime. This subleading order geometric optics expansion, in which the conventional eikonal function is modified by inserting a carefully chosen helicity-dependent correction, is called spin optics. We derive the propagation and polarization equations in the spin optics approximation as electromagnetic waves travel in curved spacetime. Polarization-dependent deviation of the light ray trajectory from the geodesic, describing the gravitational spin Hall effect, is observed. We also establish an analogy with the related phenomena (optical Magnus effect) of condensed matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, San Francisco: W.H. Freeman and Co., 1973

  2. S.R. Dolan, Int. J. Mod. Phys. D 27, 1843010 (2017)

    ADS  Google Scholar 

  3. Dolan, S. R., arXiv:1801.02273 (2018)

  4. V.P. Frolov, A.A. Shoom, Phys. Rev. D 84, 044026 (2011)

    ADS  Google Scholar 

  5. N. Yamamoto, Phys. Rev. D 98, 061701 (2018)

    ADS  Google Scholar 

  6. C.-M. Yoo, Phys. Rev. D 86, 084005 (2012)

    ADS  Google Scholar 

  7. A.A. Shoom, Phys. Rev. D 104, 084007 (2021)

    ADS  Google Scholar 

  8. Dahal, P. K., arXiv:2107.02761 (2021)

  9. S. Hou, X.-L. Fan, Z.-H. Zhu, Phys. Rev. D 100, 064028 (2019)

    ADS  Google Scholar 

  10. L. Andersson, J. Joudioux, M.A. Oancea et al., Phys. Rev. D 103, 044053 (2021)

    ADS  Google Scholar 

  11. A.V. Dooghin, N.D. Kundikova, V.S. Liberman et al., Phys. Rev. A 45, 8204 (1992)

    ADS  Google Scholar 

  12. M. Onoda, S. Murakami, N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004)

    ADS  Google Scholar 

  13. V.S. Liberman, B.Y. Zel’dovich, Phys. Rev. A 46, 5199 (1992)

    ADS  Google Scholar 

  14. B. Mashhoon, Nature (London) 250, 316 (1974)

    ADS  Google Scholar 

  15. B. Mashhoon, Phys. Rev. D 11, 2679 (1975)

    ADS  Google Scholar 

  16. X. Ling, X. Zhou, K. Huang et al., Report. Progress Phys. 80, 066401 (2017)

    ADS  Google Scholar 

  17. J. Wunderlich, B. Kaestner, J. Sinova et al., Phys. Rev. Lett. 94, 047204 (2005)

    ADS  Google Scholar 

  18. Y.K. Kato, R.C. Myers, A.C. Gossard et al., Science 306, 1910 (2004)

    ADS  Google Scholar 

  19. O. Hosten, P. Kwiat, Science 319, 787 (2008)

    ADS  Google Scholar 

  20. K.Y. Bliokh, A. Niv, V. Kleiner et al., Nat. Photon. 2, 748 (2008)

    ADS  Google Scholar 

  21. A. Aiello, J.P. Woerdman, Opt. Lett. 33, 1437 (2008)

    ADS  Google Scholar 

  22. K.Y. Bliokh, F.J. Rodríguez-Fortuño, F. Nori et al., Nat. Photon. 9, 796 (2015)

    ADS  Google Scholar 

  23. A. Aiello, P. Banzer, M. Neugebauer et al., Nat. Photon. 9, 789 (2015)

    ADS  Google Scholar 

  24. G. Sundaram, Q. Niu, Phys. Rev. B 59, 14915 (1999)

    ADS  Google Scholar 

  25. Oancea, M. A., Paganini, C. F., Joudioux, J., et al., arXiv:1904.09963 (2019)

  26. M.A. Oancea, J. Joudioux, I.Y. Dodin et al., Phys. Rev. D 102, 024075 (2020)

    ADS  Google Scholar 

  27. V.P. Frolov, Phys. Rev. D 102, 084013 (2020)

    ADS  Google Scholar 

  28. R. Takahashi, Astrophys. J. 835, 103 (2017)

    ADS  Google Scholar 

  29. A.I. Harte, Gen. Relative. Gravit. 51, 14 (2019)

    ADS  Google Scholar 

  30. P. Gosselin, A. Bérard, H. Mohrbach, Phys. Rev. D 75, 084035 (2007)

    ADS  Google Scholar 

  31. P. Saturnini, Un modèle de particule à spin de masse nulle dans le champ de gravitation. Thesis, (Université de Provence, 1976)

  32. J.M. Souriau, Modele de particule a spin dans le champ électromagnétique et gravitationnel. Ann. Inst. Henri Poincar A 20, 315 (1974)

    MATH  Google Scholar 

  33. M. Mathisson, Gen. Relativ. Gravit. 42, 1011 (2010)

    ADS  Google Scholar 

  34. A. Papapetrou, Proc. Roy. Soc. Lond. Ser. A 209, 248 (1951)

    ADS  Google Scholar 

  35. E. Corinaldesi, A. Papapetrou, Proc. Roy. Soc. Lond. Ser. A 209, 259 (1951)

    ADS  Google Scholar 

  36. W.G. Dixon, Il Nuovo Cimento 34, 317 (1964)

    ADS  Google Scholar 

  37. A. Bérard, H. Mohrbach, Phys. Lett. A 352, 190 (2006)

    ADS  Google Scholar 

  38. P. Gosselin, A. Bérard, H. Mohrbach, Eur. Phys. J. B 58, 137 (2007)

    ADS  Google Scholar 

  39. H. Goldstein, C. Poole, J. Safko, in Classical Mechanics, 3rd edn., ed. by H. Goldstein, C. Poolo, J. Safko (Addison-Wesley, San Francisco, 2002), p.2002

    Google Scholar 

  40. M.V. Berry, Nature (London) 326, 277 (1987)

    ADS  Google Scholar 

  41. B.Y. Zel’dovich, N.D. Kundikova, Quantum Elec. 25, 172 (1995)

    ADS  Google Scholar 

  42. S.I. Vinitski, V.L. Derbov, V.M. Dubovik et al., Soviet Phys. Uspekhi 33(6), 403 (1990)

    ADS  Google Scholar 

  43. C. Duval, Z. Horváth, P.A. Horváthy, Phys. Rev. D 74, 021701 (2006)

    ADS  Google Scholar 

  44. J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979), p.448

    Google Scholar 

  45. K.Y. Bliokh, Y. Gorodetski, V. Kleiner et al., Phys. Rev. Lett. 101, 030404 (2008)

    ADS  Google Scholar 

  46. H. Spohn, Ann. Phys. 282, 420 (2000)

    ADS  Google Scholar 

  47. K.Y. Bliokh, J. Opt. A Pure Appl. Opt. 11, 094009 (2009)

    ADS  Google Scholar 

  48. R. Fanelli, J. Math. Phys. 16, 1729 (1975)

    ADS  Google Scholar 

  49. R. Bhandari, Phys. Rep. 281, 1 (1997)

    ADS  Google Scholar 

  50. R.G. Littlejohn, W.G. Flynn, Phys. Rev. A 44, 5239 (1991)

    ADS  Google Scholar 

  51. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, vol. 17 (Springer Science & Business Media, 2013)

    MATH  Google Scholar 

  52. A.V. Volyar, V.Z. Zhilaitis, V.G. Shvedov et al., Optika Atmosfery i Okeana 11, 1199 (1998)

    Google Scholar 

  53. N.D. Kundikova, G.V. Chaptsova, J. Opt. A: Pure Appl. Opt. 1, 341 (1999)

    ADS  Google Scholar 

  54. P.K. Dahal, D.R. Terno, Phys. Rev. A 104, 042610 (2021)

    ADS  Google Scholar 

  55. Dahal, P. K. & Terno, D. R. 2021, arXiv:2111.03849

Download references

Acknowledgements

PKD is supported by an International Macquarie University Research Excellence Scholarship.

Funding

No external funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is a single author contribution.

Corresponding author

Correspondence to Pravin Kumar Dahal.

Ethics declarations

Conflict of interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Geometric optics limit

All the results of geometrical optics could be retrieved by taking Eqs. (12)–(14) and substituting \(m_1^\beta =0=l_1^\beta\). The Lorenz condition Eq. (12) and the wave equation Eq. (13) in the leading order approximation in \(\omega\) reduces to

$$\begin{aligned} l_0^\alpha m_{0 \alpha }= 0= l_0^\alpha l_{0\alpha }. \end{aligned}$$
(A1)

Next, we calculate \(\tilde{m}_{0\alpha }j^\alpha\) from Eq. (13) by taking \(m_1^{\alpha }=0=l_{1\mu }\) as they are subleading order terms in \(\omega\) and thus irrelevant in geometric optics approximation, to obtain

$$\begin{aligned} l^\beta _{0;\beta }+2 \tilde{m}_{0 \alpha } m^\alpha _{0;\beta }l_0^\beta +2 \frac{a_{;\beta }}{a} l_0^\beta =0. \end{aligned}$$
(A2)

Since the term \(\tilde{m}_{0 \alpha } m^\alpha _{0;\beta }l_0^\beta\) is purely imaginary and the remaining terms

$$\begin{aligned} l^\beta _{0;\beta }+2 \frac{a_{;\beta }}{a} l_0^\beta , \end{aligned}$$

are purely real, they should be separately zero, thereby giving

$$\begin{aligned} l^\beta _{0;\beta }+2 \frac{a_{;\beta }}{a} l_0^\beta =0, \qquad m^\alpha _{0;\beta }l_0^\beta =0. \end{aligned}$$
(A3)

In the geometric optics approximation, these are the entire set of equations for electromagnetic waves in curved spacetime.

Checking self-duality

To verify that the tetrad \(\left( \dot{x}^\alpha , n^\alpha , m^\alpha , \tilde{m}^\alpha \right)\), satisfying Eqs. (62), (63) and (65) in the subleading order, is not a self-dual solution, let us first calculate Eq. (34):

$$\begin{aligned}{} {} \mathcal{Z}_{\alpha \beta } l^\alpha \tilde{m}^\beta& =\frac{i a}{\omega } \left( -\frac{a_{;\alpha }}{a}l_0^\alpha +m_{0\alpha ;\beta }l_0^\alpha \tilde{m}_0^\beta \right) \nonumber \\{} & {} =\frac{i a}{\omega } \left( \frac{1}{2} l^\alpha _{0;\alpha }-m_0^\alpha l_{0 \alpha ;\beta } \tilde{m}_0^\beta \right) =0, \end{aligned}$$
(B1)

where Eq. (A3) is used to obtain this identity. Similarly, Eq. (33) gives

$$\begin{aligned}{} {} \mathcal{Z}_{\alpha \beta } \left( \tilde{m}^\alpha m^\beta - l^\alpha n^\beta \right)& =\frac{i}{\omega }\left( \frac{a_{;\alpha }}{a}m_0^\alpha -m_{0\alpha ;\beta }l_0^\alpha n_0^\beta \right) \nonumber \\{} & {} =\frac{i}{\omega }\left( - m^\alpha _{0; \alpha }- i b_\alpha m_0^\alpha -m_{0\alpha ;\beta }l_0^\alpha n_0^\beta \right) =0, \end{aligned}$$
(B2)

where Eq. (66) is used to arrive at this identity. Finally, Eq. (32) gives

$$\begin{aligned}{} {} \mathcal{Z}_{\alpha \beta } m^\alpha n^\beta & =\frac{i}{\omega }\left( -m_{0\alpha ;\beta }m_0^\beta n_0^\alpha \right) \nonumber \\{} & {} =\frac{i}{\omega }\left( m_0^\alpha n_{0\alpha ;\beta } m_0^\beta \right) \equiv \frac{i}{\omega } \tilde{\lambda }, \end{aligned}$$
(B3)

where \(\lambda\) denotes the Newman–Penrose scalar. Hence, Eq. (32) is not satisfied unless \(\tilde{\lambda }=0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahal, P.K. Covariant formulation of spin optics for electromagnetic waves. Appl. Phys. B 129, 11 (2023). https://doi.org/10.1007/s00340-022-07952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07952-2

Navigation