Skip to main content
Log in

Defect identification of metal additive manufacturing parts based on laser-induced breakdown spectroscopy and machine learning

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The real-time defect detection of metal additive manufacturing (AM) parts still remains a challenge in the industrial area. In this work, we use the laser-induced-breakdown spectroscopy (LIBS) combined with machine learning to distinguish between the defect-free and defect samples of metal AM parts, and obtain the characteristic spectra of both types of the samples with using the principal component analysis (PCA) for data preprocessing. Four classification models for the defect-free and defect samples are established as Naive Bayes, K-Nearest Neighbor, Decision Tree and Random Forest, and their performance is evaluated by a tenfold cross-validation method. The results show that among the four classification models, the Random Forest model with integrated learning performs the best. The overall accuracy achieves 98.75%, and the sensitivity and specificity are 99.17% and 98.33%, respectively. And the area under the curve (AUC) is 0.9834. This study shows that the LIBS technology can be used as a fast and accurate tool to identify the defects of AM parts; which can be further developed into a real-time, online, multi-element and nondestructive defect detection in the process of additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Bonny, B. Amit, Addit. Manuf. 22(10), 844–851 (2018)

    Google Scholar 

  2. M. Holmes, Met. Powder Rep. 69(6), 3 (2014)

    Article  Google Scholar 

  3. L.E. Murr, J. Mater. Sci. Technol. 32(10), 987–995 (2016)

    Article  Google Scholar 

  4. F. Blaya, P.S. Pedro, J.L. Silva, R. D’Amato, E.S. Heras, J.A. Juanes, J. Med. Syst. 42(3), 54 (2018)

    Article  Google Scholar 

  5. V. Machi, Natl. Def. 102(768), 21–22 (2017)

    Google Scholar 

  6. N. Kladovasilakis, T. Kontodina, P. Charalampous, I. Kostavelis, D. Tzovaras, I.O.P. Conf, IOP Conf. Ser. Mater. Sci. Eng. 1037(1), 2018 (2021)

    Article  Google Scholar 

  7. O. Andersson, A. Graichen, H. Brodin, V. Navrotsky, J. Eng. Gas Turbines Power 139(3), 031506.1-031506.9 (2017)

    Article  Google Scholar 

  8. M.C. Brennan, J.S. Keist, T.A. Palmer, J. Mater. Eng. Perform. 30, 4808–4818 (2021)

    Article  Google Scholar 

  9. H. Taheri, M.R.B.M. Shoaib, L.W. Koesterx, T.A. Bigelow, L.J. Bond, Int. J. Addit. Subtract. Mater. Manuf. 1(2), 172 (2017)

    Google Scholar 

  10. Z.M. Guo, P.J. Ni, Y.L. Dai, W.G. Zhang, K.D. Huang, J. Phys.: Conf. Ser. 1827(1), 012039 (2021)

    Google Scholar 

  11. V.K. Nadimpalli, G.M. Karthik, G.D. Janakiram, P.B. Nagy, Int. J. Adv. Manuf. Technol. 108(5), 1793–1810 (2020)

    Article  Google Scholar 

  12. S.J. Wolff, S. Webster, N.D. Parab, B. Aronson, T. Sun, JOM 73, 189–200 (2021)

    Article  ADS  Google Scholar 

  13. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F.D. Carlo, L. Chen, A.D. Rollett, T. Sun, Sci. Rep. 7, 3602 (2017)

    Article  ADS  Google Scholar 

  14. L.B. Guo, D. Zhang, L.X. Sun, S.C. Yao, Z. Wang, Front. Phys. 16(2), 22500 (2021)

    Article  ADS  Google Scholar 

  15. F. Ruan, J. Qi, C. Yan, H. Tang, T. Zhang, H. Li, J. Anal. At. Spectrom. 32(11), 2194–2199 (2017)

    Article  Google Scholar 

  16. R. Hernández-García, M.E. Villanueva-Tagle, F. Calderón-Piñar, M.D. Durruthy-Rodríguez, F.W.B. Aquino, E.R. Pereira-Filho, M.S. Pomares-Alfonso, Microchem. J. 130, 21–26 (2017)

    Article  Google Scholar 

  17. T. Zhang, C. Yan, J. Qi, H. Tang, L. Hua, J. Anal. At. Spectrom. 32(10), 1960–1965 (2017)

    Article  Google Scholar 

  18. V.N. Lednev, P.A. Sdvizhenskii, R.D. Asyutin, R.S. Tretyakov, M.Y. Grishin, A.Y. Stavertiy, S.M. Pershin, Addit. Manuf. 25, 64–70 (2019)

    Google Scholar 

  19. P.A. Sdvizhenskii, V.N. Lednev, R.D. Asyutin, M.Y. Grishin, R.S. Tretyakov, S.M. Pershin, J. Anal. At. Spectrom. 35, 246–253 (2020)

    Article  Google Scholar 

  20. L. Song, W. Huang, X. Han, J. Mazumder, I.R.E. Trans, Ind. Electron. 64(1), 633–642 (2017)

    Article  Google Scholar 

  21. M. Qasim, M. Anwar-Ul-Haq, M.S. Afgan, S.U. Haq, M.A. Baig, Plasma Sci. Technol. 22(7), 074007 (2020)

    Article  ADS  Google Scholar 

  22. Y. Tang, L.B. Guo, J.M. Li, S.S. Tang, Z.H. Zhu, S.X. Ma, X.Y. Li, X.Y. Zeng, J. Duan, Y.F. Lu, J. Anal. At. Spectrom. 33(10), 1683–1688 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Natural Science Foundation of China (NSFC, No. 51374040), Department of Science and Technology of Jilin Province of China (Grant no. 20200403008SF) and Education Department of Jilin Province of China (Grant no. JJKH20210737KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yutao Huang or Xiaomei Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Yang, J., Huang, Y. et al. Defect identification of metal additive manufacturing parts based on laser-induced breakdown spectroscopy and machine learning. Appl. Phys. B 127, 173 (2021). https://doi.org/10.1007/s00340-021-07725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07725-3

Navigation