Skip to main content
Log in

Nanogratings formation in multicomponent silicate glasses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate the formation of porous nanogratings in various oxide glasses including TiO2-doped silica, GeO2 and alumino-borosilicate by near-IR femtosecond laser radiation. ULE and GeO2 glasses exhibit similar birefringence to pure silica, whereas Borofloat 33 reveals twice weaker amplitude. Using quantitative birefringence measurements, small-angle X-ray scattering and scanning electron microscopy, we correlate birefringence and porous nanolayers formation according to laser repetition rate and glass composition. We show that heat accumulation is a crucial parameter limiting the glass decomposition and thus nanogratings formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, P. Martin, Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A Mater. Sci. Process. 79, 1695–1709 (2004)

    Article  ADS  Google Scholar 

  2. F. Quéré, S. Guizard, P. Martin, Time-resolved study of laser-induced breakdown in dielectrics. EPL (Europhys. Lett.) 56, 138 (2001)

    Article  ADS  Google Scholar 

  3. R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  4. C. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784 (2001)

    Article  ADS  Google Scholar 

  5. D. Tan, K.N. Sharafudeen, Y. Yue, J. Qiu, Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater Sci. 76, 154–228 (2016)

    Article  Google Scholar 

  6. W. Watanabe, Y. Li, K. Itoh, [INVITED] Ultrafast laser micro-processing of transparent material. Opt. Laser Technol. 78, 52–61 (2016)

    Article  ADS  Google Scholar 

  7. Y. Shimotsuma, P. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  8. E. Bricchi, B.G. Klappauf, P.G. Kazansky, Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119–121 (2004)

    Article  ADS  Google Scholar 

  9. M. Beresna, M. Gecevičius, P.G. Kazansky, Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photonics 6, 293–339 (2014)

    Article  Google Scholar 

  10. M. Beresna, M. Gecevičius, and P.G. Kazansky, Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials, in Progress in Nonlinear Nano-Optics, ed. by S. Sakabe, C. Lienau, R. Grunwald (Springer, Switzerland, 2015), pp. 31–46

  11. R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. Kazansky, B. Poumellec, Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass. Appl. Phys. Lett. 107, 181111 (2015)

    Article  ADS  Google Scholar 

  12. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, B. Poumellec, Anatomy of a femtosecond laser processed silica waveguide [Invited]. Opt. Mater. Express 1, 998–1008 (2011)

    Article  Google Scholar 

  13. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.Ä. Poulin, F. Brisset, Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7, 953–962 (2013)

    Article  Google Scholar 

  14. S. Richter, C. Miese, S. Döring, F. Zimmermann, M.J. Withford, A. Tünnermann, S. Nolte, Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE™. Opt. Mater. Express 3, 1161–1166 (2013)

    Article  Google Scholar 

  15. F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, S. Nolte, Ultrashort laser pulse induced nanogratings in borosilicate glass. Appl. Phys. Lett. 104, 211107 (2014)

    Article  ADS  Google Scholar 

  16. L. Bressel, D. de Ligny, E.G. Gamaly, A.V. Rode, S. Juodkazis, Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses. Opt. Mater. Express 1, 1150–1158 (2011)

    Article  Google Scholar 

  17. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, S. Juodkazis, Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited]. Opt. Mater. Express 1, 605–613 (2011)

    Article  Google Scholar 

  18. T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, M. Lancry, Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing. J. Am. Ceram. Soc. 98, 1471–1477 (2015)

    Article  Google Scholar 

  19. M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F.o. Brisset, S. Nolte, and B. Poumellec, Porous nanogratings and related form birefringence in silicate and germanate glasses, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, (Optical Society of America, Washington/DC 2014), BW2D. 2

  20. B. Poumellec, M. Lancry, A. Chahid-Erraji, P. Kazansky, Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited]. Opt. Mater. Express 1, 766–782 (2011)

    Article  Google Scholar 

  21. J. Nishii, H. Yamanaka, H. Hosono, H. Kawazoe, Origin of enormous photon-induced volume expansion of GeO2–SiO2 thin glass films. Nucl. Instrum. Methods Phys. Res. B 141, 625–628 (1998)

    Article  ADS  Google Scholar 

  22. F. Zimmermann, A. Plech, S. Richter, S. D√∂ring, A. Tunnermann, S. Nolte, Structural evolution of nanopores and cracks as fundamental constituents of ultrashort pulse-induced nanogratings. Appl. Phys. A 114, 75–79 (2014)

    Article  ADS  Google Scholar 

  23. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E.B. Kley, A. T√ºnnermann, S. Nolte, On the fundamental structure of femtosecond laser, Äêinduced nanogratings. Laser Photonics Rev. 6, 787–792 (2012)

    Article  Google Scholar 

  24. Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, Y. Cheng, Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt. Lett. 40, 3623–3626 (2015)

    Article  ADS  Google Scholar 

  25. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, V. Bhardwaj, Transient nanoplasmonics inside dielectrics. J. Phys. B: At. Mol. Opt. Phys. 40, S273 (2007)

    Article  ADS  Google Scholar 

  26. P. Kazansky, E. Bricchi, Y. Shimotsuma, K. Hirao, in Conference on Self-Assembled Nanostructures and Two-Plasmon Decay in Femtosecond Processing of Transparent Materials. Lasers and Electro-Optics 2007, Baltimore, Maryland United States, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThJ3

  27. F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, Time-resolved microraman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing, Proceedings of LAMP 2013(2013)

  28. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005)

    Article  ADS  Google Scholar 

  29. M. Lancry, E. Régnier, B. Poumellec, Fictive temperature in silica-based glasses and its application to optical fiber manufacturing. Prog. Mater. Sci. 57(1), 63–97 (2012)

    Article  Google Scholar 

  30. A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B 71, 125435 (2005)

    Article  ADS  Google Scholar 

  31. F. Zimmermann, Sr Richter, S. D√∂ring, A. T√ºnnermann, S. Nolte, Ultrastable bonding of glass with femtosecond laser bursts. Appl. Opt. 52, 1149–1154 (2013)

    Article  ADS  Google Scholar 

  32. R. Desmarchelier, B. Poumellec, F. Brisset, S. Mazerat, M. Lancry, In the heart of femtosecond laser induced nanogratings: from porous nanoplanes to form birefringence. World J. Nano Sci. Eng. 5, 115 (2015)

    Article  ADS  Google Scholar 

  33. M. Lancry, J. Canning, K. Cook, M. Heili, D. Neuville, B. Poumellec, Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2–SiO2 glasses. Opt. Mater. Express 6, 321–330 (2016)

    Article  Google Scholar 

  34. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, Y. Cheng, High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica 2, 329–334 (2015)

    Article  Google Scholar 

  35. M. Beresna, M. Geceviçius, P.G. Kazansky, Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt. Mater. Express 1, 783–795 (2011)

    Article  Google Scholar 

  36. E. Simova, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Femtosecond laser-induced long-range self-organized periodic planar nanocracks for applications in biophotonics,” in Proc. SPIE 6458, Photon Processing in Microelectronics and Photonics VI, 64581B, ed. by C.B. Arnold , T. Okada , M. Meunier, A.S. Holmes , D.B. Geohegan, F. Träger, J.J. Dubowski (SPIE, Bellingham WA, USA, 2007), 64581B-64581B-64514, 13 Mar 2007. doi:10.1117/12.699157

Download references

Acknowledgments

This work has been performed in the framework of the FLAG (Femtosecond Laser Application in Glasses) international project with the support of FP7-PEOPLE-IRSES e-FLAG 247635, the Agence Nationale pour la Recherche (ANR-09-BLAN-0172-01). We acknowledge beamtime at the Swiss Light Source (PSI, Villigen Ch) and excellent support by M. Liebi and A. Plech (KIT). The work is supported by DFG via priority program SPP 1327 (NO 462/5-2). The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 312284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lancry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lancry, M., Zimmerman, F., Desmarchelier, R. et al. Nanogratings formation in multicomponent silicate glasses. Appl. Phys. B 122, 66 (2016). https://doi.org/10.1007/s00340-016-6337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6337-8

Keywords

Navigation