Skip to main content
Log in

Measurement of soot concentration and bulk fluid temperature and velocity using modulated laser-induced incandescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The use of a modulated LII two-colour technique to measure soot temperature in a laminar diffusion flame is described, and the results compared to CARS experiments. A sinusoidal modulated diode laser is used to excite the soot, and both the modulated LII intensity and its relative phase to the excitation source are measured with a lock-in amplifier and recorded. Modulation frequencies from 25 to 200,000 Hz were employed. The temperature is derived from the ratio of the modulated LII radiation signal at 445 and 750 nm, and the results compared to values obtained by CARS spectroscopy. The modulated LII temperatures were largely independent of modulation frequency and agreed well with the CARS temperatures. A theory is developed to explain the dependence of the phase delay of the modulated LII signal (with reference to that of the laser excitation source) on gas replacement time in the sample volume, soot cooling rate and soot volume fraction. The theory is shown to give a reasonable fit to the experimental results at all frequencies. At lower frequencies, the phase delay is dominated by the gas replacement time in the sample volume and at higher frequencies by the cooling rate of the heated soot. Time constants for both processes and the soot volume fraction are derived from the data and shown to be largely in agreement with the expected values. Using modulated LII-determined soot volume fraction and inverted and scatter corrected line-of-sight attenuation-determined absorption coefficients, the soot refractive index absorption function E(m) was measured to be between 0.45 and 0.42 over the wavelength range of 436–825 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  2. M. Stephens, N. Turner, J. Sandberg, Appl. Opt. 42, 3726 (2003)

    Article  ADS  Google Scholar 

  3. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  4. Y. Nam, Thesis, Dankook University (2010)

  5. Y. Nam, W. Lee, The measurement of soot particle temperatures using a two-color pyrometry and modulated LII signals, in Proceedings of 33rd KOSCO symposium, vol. 3 (Korean Society of Combustion, 2006), p. 110

  6. W. Lee, J.S. Lee, Y. Nam, J. Korean Soc. Combust. 3, 34 (2006)

    Google Scholar 

  7. J.S. Lee, Masters thesis, Dankook University (2006)

  8. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  9. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38, 2478 (1999)

    Article  ADS  Google Scholar 

  10. Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames, in Proceedings of the 26th International Symposium on Combustion, vol. 26 (Napoli, Italy, 1996), p. 2351–2359

  11. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657 (2009)

    Article  ADS  Google Scholar 

  12. A.R. Coderre, K.A. Thomson, D.R. Snelling, M.R. Johnson, Appl. Phys. B 104, 175 (2011)

    Article  ADS  Google Scholar 

  13. F. Migliorini, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 273 (2011)

    Article  ADS  Google Scholar 

  14. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 123, 331 (2001)

    Article  Google Scholar 

  15. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Hoboken, 1983)

    Google Scholar 

  16. F. Liu, X. He, X. Ma, Q. Zhang, M.J. Thomson, H. Guo, G.J. Smallwood, S. Shuai, J. Wang, Combust. Flame 158, 547 (2011)

    Article  Google Scholar 

  17. D.R. Snelling, F.S. Liu, G.J. Smallwood, O.L. Gulder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  18. R.A. Dobbins, G.W. Mulholland, N.P. Bryner, Atmos. Environ. 28, 889 (1994)

    Article  ADS  Google Scholar 

  19. A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379 (1999)

    Article  Google Scholar 

  20. H.A. Michelsen, Appl. Phys. B Lasers Opt. 94, 103 (2009)

    Article  ADS  Google Scholar 

  21. C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)

    Article  Google Scholar 

  22. D.R. Snelling, O. Link, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 385–397 (2011)

    Article  ADS  Google Scholar 

  23. J. Cai, C.M. Sorensen, Phys. Rev. B 50, 3397 (1994)

    Article  ADS  Google Scholar 

  24. S.K. Friedlander, C.-S. Wang, J. Colloid Interface Sci. 22, 126 (1966)

    Article  Google Scholar 

  25. P.G.J. van Dongen, M.H. Ernst, Phys. Rev. Lett. 54, 1396 (1985)

    Article  ADS  Google Scholar 

  26. C.-S. Wang, S.K. Friedlander, J. Colloid Interface Sci. 24, 170 (1967)

    Article  Google Scholar 

  27. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. Ser. A 430, 577 (1990)

    Article  ADS  Google Scholar 

  28. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40, 1 (2006)

    Article  Google Scholar 

  29. E. Therssen, Y. Bouvier, C. Schoemaecker Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007)

    Article  ADS  Google Scholar 

  30. S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Appl. Phys. B Lasers Opt. 116, 313 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Thomson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snelling, D.R., Sawchuk, R.A., Smallwood, G.J. et al. Measurement of soot concentration and bulk fluid temperature and velocity using modulated laser-induced incandescence. Appl. Phys. B 119, 697–707 (2015). https://doi.org/10.1007/s00340-015-6107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6107-z

Keywords

Navigation