Skip to main content
Log in

Multi-resonant compact nanoaperture with accessible large nearfields

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a compact and multi-resonant aperture system supporting large local electromagnetic fields, which is highly advantageous for applications demanding high signal-to-noise ratio. The system is composed of subwavelength H-shaped apertures with extended arms fabricated through thin metal films on a free-standing dielectric membranes. Through finite-difference time-domain calculations, we numerically investigate the multi-resonant spectral nature of the compact system in detail, which is associated with the individual optical response of the constituting aperture elements. In order to realize the aperture systems working in the spectral region of interest, we introduce a fine-tuning mechanism of the optical responses through geometrical device parameters. Furthermore, we present a circuit analog of the system demonstrating the impedance characteristics of the plasmonic modes supported by the aperture arrays. The highly accessible large electromagnetic fields extending over a large volume improve the sensitivity of the nanostructured platform to the surface conditions by enhancing the overlap between biomolecules in the vicinity and the local optical fields. We also experimentally demonstrate this highly advantageous field generation capability through large absorption signal enhancements in the surface enhanced infrared absorption spectroscopy of protein bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I.Z. Maxwell, J.B. Ashcom, E. Mazur, Nature 426, 816 (2003)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. V.M. Shalaev, Nat. Photonics. 1, 41 (2007)

    Article  ADS  Google Scholar 

  4. N. Engheta, Science 317, 1698 (2007)

    Article  ADS  Google Scholar 

  5. A. Ourir, A. Lustrac, J.M. Lourtioz, Appl. Phys. Lett. 88, 084103 (2006)

    Article  ADS  Google Scholar 

  6. M. Turkmen, S. Aksu, A.E. Cetin, A.A. Yanik, H. Altug, Opt. Express 19, 7921 (2011)

    Article  ADS  Google Scholar 

  7. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M.M. Sigalas, G. Tuttle, K.M. Ho, J. Appl. Phys. 87, 603 (2000)

    Article  ADS  Google Scholar 

  8. S.M. Sadeghi, IEEE Trans. Nanotechnol. 10, 566 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)

    Article  ADS  Google Scholar 

  10. E. Cubukcu, F. Capasso, Appl. Phys. Lett. 95, 201101 (2009)

    Article  ADS  Google Scholar 

  11. E. Cubukcu, S. Zhang, Y.S. Park, G. Bartal, X. Zhang, Appl. Phys. Lett. 95, 043113 (2009)

    Article  ADS  Google Scholar 

  12. S. Lal, S. Link, N.J. Halas, Nat. Photonics. 1, 641 (2007)

    Article  ADS  Google Scholar 

  13. G. Leveque, O.J.F. Martin, Phys. Rev. Lett. 100, 117402 (2008)

    Article  ADS  Google Scholar 

  14. J.B. Pendry, Nat. Mater. 5, 599 (2006)

    Article  ADS  Google Scholar 

  15. W. Dickson, G.A. Wurtz, P.R. Evans, R.J. Pollard, A.V. Zayats, Nano Lett. 8, 281 (2008)

    Article  ADS  Google Scholar 

  16. W. Dickson, G.A. Wurtz, P.R. Evans, D. O’Connor, R. Atkinson, R. Pollard, A.V. Zayats, Phys. Rev. B 76, 115411 (2007)

    Article  ADS  Google Scholar 

  17. V. Zayats, R.J. Pollard, Appl. Phys. Lett. 91, 043101 (2007)

    Article  ADS  Google Scholar 

  18. F. Wang, Y.R. Shen, Phys. Rev. Lett. 97, 206806 (2006)

    Article  ADS  Google Scholar 

  19. H. Xu, E.J. Bjerneld, M. Kall, L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  20. J.B. Jackson, N.J. Halas, Proc. Natl. Acad. Sci. 101, 17930 (2004)

    Article  ADS  Google Scholar 

  21. A.E. Cetin, A.A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, H. Altug, Appl. Phys. Lett. 98, 111110 (2011)

    Article  ADS  Google Scholar 

  22. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 0174021 (2005)

    Article  Google Scholar 

  23. M. Huang, A.A. Yanik, T.Y. Chang, H. Altug, Opt. Express 17, 24224 (2009)

    Article  ADS  Google Scholar 

  24. A.A. Yanik, M. Huang, A. Artar, T.Y. Chang, H. Altug, Appl. Phys. Lett. 96, 021101 (2010)

    Article  ADS  Google Scholar 

  25. S. Aksu, A.A. Yanik, R. Adato, A. Altar, M. Huang, H. Altug, Nano Lett. 10, 2511 (2010)

    Article  ADS  Google Scholar 

  26. A.E. Cetin, A.F. Coskun, B.C. Galarreta, M. Huang, D. Herman, A. Ozcan, H. Altug, Light Sci. Appl. 3, e122 (2014)

    Article  Google Scholar 

  27. A.E. Cetin, A. Mertiri, S. Erramilli, H. Altug, Adv. Opt. Mater. 1, 915 (2013)

    Article  Google Scholar 

  28. A. Yanik, A.E. Cetin, M. Huang, A. Artar, S.H. Mousavi, A. Khanikaev, J.H. Connor, G. Shvets, H. Altug, Proc. Natl. Acad. Sci. 108, 11784 (2011)

    Article  Google Scholar 

  29. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985)

    Google Scholar 

  30. A.E. Cetin, M. Turkmen, S. Aksu, H. Altug, IEEE Trans. Nanotechnol. 11, 208 (2011)

    Article  ADS  Google Scholar 

  31. A.E. Cetin, H. Altug, ACS Nano 6, 9989 (2012)

    Article  Google Scholar 

  32. A.E. Cetin, D. Etezadi, H. Altug, Adv. Opt. Mater. 2, 866 (2014)

  33. R. Adato, H. Altug, Nat. Commun. 4, 2154 (2013)

    Article  ADS  Google Scholar 

  34. R. Adato, A.A. Yanik, J.J. Amsden, D.L. Kaplan, F.G. Omenetto, M.K. Hong, S. Erramilli, H. Altug, Proc. Natl. Acad. Sci. U.S.A. 106, 19227 (2009)

    Article  ADS  Google Scholar 

  35. D.W. Porterfield, J.L. Hesler, R. Densing, E.R. Mueller, T.W. Crowe, R.M. Weikle II, Appl. Opt. 33, 6046 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Altug Research Group acknowledges National Science Foundation (NSF) CAREER Award and Presidential Early Career Award for Scientist and Engineers ECCS-0954790, Office of Naval Research (ONR) Young Investigator Award 11PR00755-00-P00001, NSF Engineering Research Center on Smart Lighting EEC-0812056 and EPFL. M. Turkmen acknowledges the Technological Research Council of Turkey (TUBITAK) under research grants and project 113E277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif E. Cetin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, A.E., Turkmen, M., Aksu, S. et al. Multi-resonant compact nanoaperture with accessible large nearfields. Appl. Phys. B 118, 29–38 (2015). https://doi.org/10.1007/s00340-014-5950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5950-7

Keywords

Navigation