Skip to main content
Log in

QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The development of a sensitive sensor for detecting nitric oxide (NO) emissions from biological samples is reported. The sensor is based on tunable diode laser absorption spectroscopy (TDLAS) using a continuous wave, thermoelectrically cooled quantum cascade laser (QCL) and a 100-m astigmatic Herriot cell. A 2f-wavelength modulation spectroscopy technique was used to obtain QCL-based TDLAS NO emission measurements with an optimum signal-to-noise ratio. An absorption line at 1,900.076 cm−1 was targeted to measure NO with a minimum detection limit of 124 ppt. Positive control measurements with the NO donor DETA NONOate were performed to determine and optimize the sensor performance for measurements of biological samples. Our measurements with NO donor show the potential suitability of the sensor for monitoring NO emission from cancer cells for biological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Fukumura, S. Kashiwagi, R.K. Jain, Nat. Rev. Cancer 6, 521 (2006)

    Article  Google Scholar 

  2. W. Xu, L.Z. Liu, M. Loizidou, M. Ahmed, I.G. Charles, Cell Res. 12, 311 (2002)

    Article  Google Scholar 

  3. R. SoRelle, Circulation 98, 2365 (1998)

    Article  Google Scholar 

  4. L. Thomsen, D. Miles, Cancer Metastasis Rev. 17, 107–118 (1998)

    Article  Google Scholar 

  5. A.J. Hobbs, A. Higgs, S. Moncada, Annu. Rev. Pharmacol. Toxicol. 39, 191 (1999)

    Article  Google Scholar 

  6. S. Mocellin, V. Bronte, D. Nitti, Med. Res. Rev. 27, 317 (2007)

    Article  Google Scholar 

  7. S. Huerta, S. Chilka, B. Bona Vida, Int. J. Oncol. 33, 909 (1992)

    Google Scholar 

  8. American Cancer Society, Cancer facts and figures 2014 (American Cancer Society, Atlanta), www.cancer.org

  9. C.A. Caneba, N. Bellance, L. Yang, L. Pabst, D. Nagrath, Am. J. Physiol. Endocrinol. Metab. 303, E1036 (2012)

    Article  Google Scholar 

  10. S.A. Cannistra, N. Engl. J. Med. 351, 2519–2529 (2004)

    Article  Google Scholar 

  11. R.C. Bast Jr., B. Hennessy, G.B. Mills, Nat. Rev. Cancer 9, 415–428 (2009)

    Article  Google Scholar 

  12. L.L. Thomsen, F.G. Lawton, R.G. Knowles, J.E. Beesley, V. Riveros-Moreno, S. Moncada, Cancer Res. 54, 1352–1354 (1994)

    Google Scholar 

  13. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  14. C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)

    Article  ADS  Google Scholar 

  15. Robert.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)

    Article  ADS  Google Scholar 

  16. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R. Curl, Appl. Phys. B 90, 165 (2008)

    Article  ADS  Google Scholar 

  17. S. Barbieri, J.-P. Pellaux, E. Studemann, D. Rosset, Rev. Sci. Instrum. 73, 2458 (2002)

    Article  ADS  Google Scholar 

  18. D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Appl. Phys B. 75, 343–350 (2002)

    Article  ADS  Google Scholar 

  19. J.B. McManus, J.H. Shorter, D.D. Nelson, M.S. Zahniser, D.E. Glenn, R.M. McGovern, Appl. Phys. B 92, 387 (2008)

    Article  ADS  Google Scholar 

  20. J.B. McManus, M.S. Zahniser, D.D. Nelson, Appl. Opt. 50, A74 (2011)

    Article  ADS  Google Scholar 

  21. R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, Opt. Express 15, 7357 (2007)

    Article  ADS  Google Scholar 

  22. S. Schilt, L. Thévenaz, P. Robert, Appl. Opt. 42, 6728 (2003)

    Article  ADS  Google Scholar 

  23. S. Schilt, L. Thévenaz, Infrared Phys. Technol. 48, 154 (2006)

    Article  ADS  Google Scholar 

  24. P. Werle, R. Mücke, F. Slemr, Appl. Phys. B. 57, 131 (1993)

    Article  ADS  Google Scholar 

  25. J.A. Hrabie, J.R. Klose, D.A. Wink, L.K. Keefer, J. Org. Chem. 58, 1472 (1993)

    Article  Google Scholar 

  26. L.K. Keefer, R.W. Nims, K.M. Davies, D.A. Wink, “NONOates” as nitric oxide donors: convenient nitric oxide dosage forms, in Nitric Oxide Part A: Sources and Detection of NO; NO Synthase, ed. by L. Packer (Academic Press, New York, 1996)

    Google Scholar 

  27. GE Water & Process Technologies, Analytical Instruments, Boulder, CO, www.geinstruments.com

Download references

Acknowledgments

The authors acknowledge Dr. C. Bauer from Testo AG, Germany, for providing the CW TEC DFB QCL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Köhring or F. K. Tittel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhring, M., Huang, S., Jahjah, M. et al. QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells. Appl. Phys. B 117, 445–451 (2014). https://doi.org/10.1007/s00340-014-5853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5853-7

Keywords

Navigation