Skip to main content
Log in

Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm−1) and combination υ 1 + υ 3 band (~3,610 cm−1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm−1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm−1, paired with the R(28) line near 3,633.08 cm−1. This combination yields high temperature sensitivity (ΔE” = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600–1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Teichert, T. Fernholz, V. Ebert, Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  2. J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)

    Article  ADS  Google Scholar 

  3. R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)

    Article  Google Scholar 

  4. R.M. Mihalcea, D.S. Baer, R.K. Hanson, A diode-laser absorption sensor system for combustion emission measurements. Meas. Sci. Technol. 9, 327–338 (1998)

    Article  ADS  Google Scholar 

  5. D.M. Sonnenfroh, M.G. Allen, Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser. Appl. Opt. 36, 3298 (1997)

    Article  ADS  Google Scholar 

  6. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Diode-laser absorption measurements of CO2 near 2.0 μm at elevated temperatures. Appl. Opt. 37, 8341 (1998)

    Article  ADS  Google Scholar 

  7. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design. Appl. Phys. B 94, 51–63 (2008)

    Article  ADS  Google Scholar 

  8. M.E. Webber, R. Claps, F.V. Englich, F.K. Tittel, J.B. Jeffries, R.K. Hanson, Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases. Appl. Opt. 40, 4395 (2001)

    Article  ADS  Google Scholar 

  9. A. Farooq, J.B. Jeffries, R.K. Hanson, CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619–628 (2008)

    Article  ADS  Google Scholar 

  10. W. Ren, J.B. Jeffries, R.K. Hanson, Temperature sensing in shock-heated evaporating aerosol using wavelength-modulation absorption spectroscopy of CO2 near 2.7 μm. Meas. Sci. Technol. 21, 105603 (2010)

    Article  ADS  Google Scholar 

  11. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24, 055107 (2013)

    Article  ADS  Google Scholar 

  12. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  13. U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, Berlin, 2008), p. 597

    Google Scholar 

  14. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14, 1459–1468 (2003)

    Article  ADS  Google Scholar 

  15. J. Vanderover, W. Wang, M.A. Oehlschlaeger, A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy. Appl. Phys. B 103, 959–966 (2011)

    Article  ADS  Google Scholar 

  16. I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson, TDL absorption sensor for in situ determination of combustion progress in scramjet ground testing, in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference (2012)

  17. S.H. Pyun, J.M. Porter, J.B. Jeffries, R.K. Hanson, J.C. Montoya, M.G. Allen, K.R. Sholes, Two-color-absorption sensor for time-resolved measurements of gasoline concentration and temperature. Appl. Opt. 48, 6492–6500 (2009)

    Article  Google Scholar 

  18. M.Y. Perrin, J.M. Hartmann, Temperature-dependent measurements and modeling of absorption by CO2–N2 mixtures in the far line-wings of the 4.3 μm CO2 band. J. Quant. Spectrosc. Radiat. Transf. 42, 311–317 (1989)

    Article  ADS  Google Scholar 

  19. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons. J. Quant. Spectrosc. Radiat. Transf. 107, 407–420 (2007)

    Article  ADS  Google Scholar 

  20. X. Chao, J.B. Jeffries, R.K. Hanson, In situ absorption sensor for NO in combustion gases with a 5.2 μm quantum-cascade laser. Proc. Combust. Inst. 33, 725–733 (2011)

    Article  Google Scholar 

  21. A. Farooq, J.B. Jeffries, R.K. Hanson, Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161–173 (2009)

    Article  ADS  Google Scholar 

  22. A. Farooq, J.B. Jeffries, R.K. Hanson, Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 micron. Appl. Opt. 48, 6740–6753 (2009)

    Article  ADS  Google Scholar 

  23. R. Sur, K. Sun, J. B. Jeffries, R. K. Hanson, Multi-species laser absorption sensors for in situ monitoring of syngas composition. Appl. Phys. B (2013). doi:10.1007/s00340-013-5567-2

  24. R.T. Pack, Pressure broadening of the dipole and Raman lines of CO2 by He and Ar. Temperature dependence. J. Chem. Phys. 70, 3424 (1979)

    Article  ADS  Google Scholar 

  25. L. Rosenmann, J.M. Hartmann, M.Y. Perrin, J. Taine, Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2,400-K temperature range. Appl. Opt. 27, 3902–3906 (1988)

    Article  ADS  Google Scholar 

  26. F. Thibault, B. Calil, J. Buldyreva, M. Chrysos, J.-M. Hartmann, J.-P. Bouanich, Experimental and theoretical CO2–Ar pressure-broadening cross sections and their temperature dependence. Phys. Chem. Chem. Phys. 3, 3924–3933 (2001)

    Article  Google Scholar 

  27. M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, High-temperature thermal decomposition of isobutane and n-butane behind shock waves. J. Phys. Chem. A 108, 4247–4253 (2004)

    Article  Google Scholar 

  28. I. Stranic, D.P. Chase, J.T. Harmon, S. Yang, D.F. Davidson, R.K. Hanson, Shock tube measurements of ignition delay times for the butanol isomers. Combust. Flame 159, 516–527 (2012)

    Article  Google Scholar 

  29. A. Farooq, D.F. Davidson, R.K. Hanson, L.K. Huynh, A. Violi, An experimental and computational study of methyl ester decomposition pathways using shock tubes. Proc. Combust. Inst. 32, 247–253 (2009)

    Article  Google Scholar 

  30. W. Ren, R.M. Spearrin, D.F. Davidson, R.K. Hanson, Thermal decomposition of C3-C5 ethyl esters: CO, H2O and CO2 time-histories behind reflected shock waves, in The 8th National Combustion Mtg (2013), p. 11

  31. L.K. Huynh, K.C. Lin, A. Violi, Kinetic modeling of methyl butanoate in shock tube. J. Phys. Chem. A 112, 13470–13480 (2008)

    Article  Google Scholar 

  32. I. Stranic, D.F. Davidson, R.K. Hanson, Shock tube measurements of the rate constant for the reaction cyclohexene → ethylene + 1,3-butadiene. Chem. Phys. Lett. 584, 18–23 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

All experiments discussed herein were performed at the High Temperature Gasdynamics Laboratory at Stanford University. Support for these experiments was provided by the Air Force Office of Scientific Research (AFOSR) with Chiping Li as contract monitor. We would also like to acknowledge Andy Tulgestke and Luke Zaczek for their support in operating the shock tube for sensor demonstration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Spearrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spearrin, R.M., Ren, W., Jeffries, J.B. et al. Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 116, 855–865 (2014). https://doi.org/10.1007/s00340-014-5772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5772-7

Keywords

Navigation