Skip to main content
Log in

Multi-species laser absorption sensors for in situ monitoring of syngas composition

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. Joshi, S. Lee, Energy Sour. 18(5), 537 (1996)

    Article  Google Scholar 

  2. T.F. Wall, Proc. Combust. Inst. 31, 31 (2007)

    Article  Google Scholar 

  3. S.J. Clayton, G.J. Stiegel, J.G. Wimer, US DoE report DOE/FE-0447 (2002)

  4. R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011)

    Article  Google Scholar 

  5. P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, Spectrochimica Acta Part B 56, 1277 (2001)

    Article  ADS  Google Scholar 

  6. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  7. J. Wolfrum, Proc. Combust. Inst. 27, 1 (1998)

    Article  Google Scholar 

  8. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 33, 725 (2011)

    Article  Google Scholar 

  9. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005)

    Article  Google Scholar 

  10. R.R. Skaggs, R.G. Daniel, A.W. Miziolek, K.L. McNesby, C. Herud, W.R. Bolt, D. Horton, Appl. Spectrosc. 53, 1143 (1999)

    Article  ADS  Google Scholar 

  11. T. Gulluk, H.E. Wagner, Rev. Sci. Instrum. 68, 230 (1997)

    Article  ADS  Google Scholar 

  12. T. Zenker, H. Fischer, C. Nikitas, U. Parchatka, G.W. Harris, D. Mihelcic, P. Musgen, H.W. Patz, M. Schultz, A. Volz-Thomas, R. Schmitt, T. Behmann, M. Weissenmayer, J.P. Burrows, J. Geophys. Res. Atmos. 103, 13615 (1998)

    Article  ADS  Google Scholar 

  13. R. Sur, T.J. Boucher, M.R. Renfro, B.M. Cetegen, J. Electrochem. Soc. 157(1), B45 (2010)

    Article  Google Scholar 

  14. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2012)

    Article  Google Scholar 

  15. P. Ortwein, W. Woiwode, S. Fleck, M. Eberhard, T. Kolb, S. Wagner, M. Gisi, V. Ebert, Exp. Fluids 49, 961 (2010)

    Article  Google Scholar 

  16. J.B. Jeffries, A. Fahrland, W. Min, R.K. Hanson, D. Sweeney, D. Wagner, K. J. Whitty, Pittsburgh Coal Conference, September (2009)

  17. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)

    Article  ADS  Google Scholar 

  18. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)

    Article  Google Scholar 

  19. T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)

    Article  ADS  Google Scholar 

  20. J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)

    Article  ADS  Google Scholar 

  21. R. Arndt, J. Appl. Phys. 36, 2522 (1965)

    Article  ADS  Google Scholar 

  22. P. Kluczynski, O. Axner, Appl. Opt. 38, 5803 (1999)

    Article  ADS  Google Scholar 

  23. K. Sun, X. Chao, R. Sur, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 110, 497 (2013)

    Article  ADS  Google Scholar 

  24. J. Humlicek, J. Quant. Spectrosc. Radiat. Transf. 27(4), 437 (1982)

    Article  ADS  Google Scholar 

  25. L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009). The HITRAN database, available at http://cfa-www.harvard.edu/hitran/

    Google Scholar 

  26. M.P. Arroyo, R.K. Hanson, Appl. Opt. 32(30), 6104 (1993)

    Article  ADS  Google Scholar 

  27. M.W. Chase Jr., JANAF-NIST thermochemical tables. J. Phys. Chem. Ref. data: Monograph No. 9 (1998)

Download references

Acknowledgments

This research was supported by the US Department of Energy (National Energy Technology Laboratory) with Dr. Susan Maley as the technical monitor and by AFOSR with Dr. Chiping Li as the technical monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritobrata Sur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sur, R., Sun, K., Jeffries, J.B. et al. Multi-species laser absorption sensors for in situ monitoring of syngas composition. Appl. Phys. B 115, 9–24 (2014). https://doi.org/10.1007/s00340-013-5567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5567-2

Keywords

Navigation