Skip to main content
Log in

Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1 Hz−1/2 with a tunable diode laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10−11 cm−1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10−12 cm−1 Hz−1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Gianfrani, R.W. Fox, L. Hollberg, J. Opt. Soc. Am. B 16(12), 2247 (1999)

    Article  ADS  Google Scholar 

  2. C. Ishibashi, H. Sasada, Jpn. J. Appl. Phys. 38 (2A), 920 (1999)

    Google Scholar 

  3. D.A. Long, A. Cygan, R.D. van Zee, M. Okumura, C.E. Miller, D. Lisak, J.T. Hodges, Chem. Phys. Lett. 536, 1 (2012)

    Article  ADS  Google Scholar 

  4. R.Z. Martinez, M. Metsala, O. Vaittinen, T. Lantta, L. Halonen, J. Opt. Soc. Am. B 23(4), 727 (2006)

    Article  ADS  Google Scholar 

  5. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Willke, R.L. Byer, Rev. Sci. Instrum. 71(2), 347 (2000)

    Article  ADS  Google Scholar 

  6. J. Ye, L.S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15(1), 6 (1998)

    Article  ADS  Google Scholar 

  7. P. Ehlers, I. Silander, J. Wang, O. Axner, 29(6), 1305 (2012)

    Google Scholar 

  8. V.M. Baev, T. Latz, P.E. Toschek, Appl. Phys. B 69(3), 171 (1999)

    Article  ADS  Google Scholar 

  9. Y. He, B.J. Orr, Appl. Phys. B 79(8), 941 (2004)

    Article  ADS  Google Scholar 

  10. H.F. Huang, K.K. Lehmann, J. Phys. Chem. A 115(34), 9411 (2011)

    Article  Google Scholar 

  11. I. Debecker, A.K. Mohamed, D. Romanini, Opt. Express 13(8), 2906 (2005)

    Article  ADS  Google Scholar 

  12. G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. Van Zee, D. F. Plusquellic, J. T. Hodges, D. A. Long, Nature Photon. 7, 532 (2013)

    Google Scholar 

  13. J.T. Hodges, H.P. Layer, W.W. Miller, G.E. Scace, Rev. Sci. Instrum. 75(4), 849 (2004)

    Article  ADS  Google Scholar 

  14. K. O. Douglass, S. E. Maxwell, G.-W. Truong, R. D. Van Zee, J. T. Hodges, D. A. Long, D. F. Plusquellic, In preparation (2013)

  15. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31(2), 97 (1983)

    Article  ADS  Google Scholar 

  16. H. Huang, K. Lehmann, Appl. Phys. B 94(2), 355 (2009)

    Article  ADS  Google Scholar 

  17. A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R.S. Trawinski, R. Ciurylo, H. Abe, J.T. Hodges, Rev. Sci. Instrum. 82(6), 063107 (2011)

    Article  ADS  Google Scholar 

  18. D.W. Allan, Proc. IEEE 54(2), 221 (1966)

    Article  Google Scholar 

  19. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simecková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533 (2009)

    Article  ADS  Google Scholar 

  20. G.-W. Truong, D.A. Long, A. Cygan, D. Lisak, R.D. Van Zee, J.T. Hodges, J. Chem. Phys. 138, 094201 (2013)

    Article  ADS  Google Scholar 

  21. K. Nakagawa, T. Katsuda, A.S. Shelkovnikov, M. Delabachelerie, M. Ohtsu, Opt. Commun. 107(5–6), 369 (1994)

    Article  ADS  Google Scholar 

  22. N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. Di Domenico, S. Schilt, Appl. Optics 51(20), 4582 (2012)

    Article  Google Scholar 

  23. S.G. Rautian, I.I. Sobelman, Sov. Phys. Usp. 9(5), 701 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Support was provided by the NIST Greenhouse Gas Measurements and Climate Research Program and a NIST Innovations in Measurement Science (IMS) award. G.-W. Truong was supported at NIST by an Australian Fulbright Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, D.A., Truong, GW., van Zee, R.D. et al. Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1 Hz−1/2 with a tunable diode laser. Appl. Phys. B 114, 489–495 (2014). https://doi.org/10.1007/s00340-013-5548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5548-5

Keywords

Navigation