Skip to main content
Log in

Laser-based sensor for a coolant leak detection in a nuclear reactor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.C. Chokshi, M. Srinivasan, D.S. Kupperman, P. Krishnaswamy, in 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT18), August 7–12, Beijing, China, 2005

  2. U. Kunze, Nucl. Energy 34, 213 (1999)

    Article  Google Scholar 

  3. U. Kunze, B. Bechtold, Nucl. Energy 29(3/4), 215 (1995)

    Article  Google Scholar 

  4. S.Y. Choi, J. Choo, H. Chung, W. Sohn, K. Kim, Vib. Spectrosc. 31, 251 (2003)

    Article  Google Scholar 

  5. C. King, in Materials Reliability Program: Survey of On-Line PWR Primary Coolant Leak Detection Technologies (MRP-187), EPRI, Palo Alto, CA, 2005, 1012947

  6. N.Y. Lee, I.S. Hwang, H.-I. Yoo, Nucl. Eng. Des. 205, 23 (2001)

    Article  Google Scholar 

  7. J. Kim, S.E. Park, T.-S. Kim, D.-Y. Jeong, K.-H. Ko, Nukleonicka 49(4), 137 (2004)

    Google Scholar 

  8. R. Vasudev, Appl. Spectrosc. 60, 926 (2006)

    Article  ADS  Google Scholar 

  9. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69(11), 3763 (1998)

    Article  ADS  Google Scholar 

  10. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19(4), 565 (2000)

    Article  Google Scholar 

  11. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Opt. Express 16(14), 10178 (2008)

    Article  ADS  Google Scholar 

  12. W.F. Drake, Spectroscopic Techniques: Cavity-Enhanced Methods. Handbook of Atomic, Molecular, and Optical Physics, vol. 43 (Springer, Berlin, 2005)

    Google Scholar 

  13. O.V. Naumenko, F. Mazzotti, O.M. Leshchishina, J. Tennyson, A. Campargue, J. Mol. Spectrosc. 242, 1 (2007)

    Article  ADS  Google Scholar 

  14. A. Campargue, F. Mazzotti, S. Beguier, O.L. Polyansky, I.A. Vasilenko, O.V. Naumenko, J. Mol. Spectrosc. 245, 89 (2007)

    Article  ADS  Google Scholar 

  15. S.-M. Hu, O.N. Ulenikov, E.S. Bekhtereva, G.A. Onopenko, S.-G. He, H. Lin, J.-X. Cheng, Q.-S. Zhu, J. Mol. Spectrosc. 212, 89 (2002)

    Article  ADS  Google Scholar 

  16. O.V. Naumenko, B.A. Voronin, F. Mazzotti, J. Tennyson, A. Campargue, J. Mol. Spectrosc. 248, 122 (2008)

    Article  ADS  Google Scholar 

  17. G.S. Engel, W.S. Drisdell, F.N. Keutsch, E.J. Moyer, J.G. Anderson, Appl. Opt. 45(36), 9221 (2006)

    Article  ADS  Google Scholar 

  18. J.B. Paul, L. Lapson, J.G. Anderson, Appl. Opt. 40(27), 4904 (2001)

    Article  ADS  Google Scholar 

  19. Y.A. Barhirkin, A.A. Kosterev, C. Roller, R.F. Curl, F.K. Tittel, Appl. Opt. 40(11), 2257 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, TS., Park, H., Ko, K. et al. Laser-based sensor for a coolant leak detection in a nuclear reactor. Appl. Phys. B 100, 437–442 (2010). https://doi.org/10.1007/s00340-010-3947-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-3947-4

Keywords

Navigation