Skip to main content
Log in

Effects of disorder on the frequency and field of photonic-crystal cavity resonators

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In recent years the application of 2-Dimensional (2D) metallic Photonic-Crystal (PC) structures to high-power microwave devices, such as particle accelerators and gyrotrons, has gained increased interest. In this paper we focus on the effect disorder has on the resonant frequency and peak electric field in the defect site of a 2D PC structure. For disorders up to a maximum of 15% variation in position and radius, we found that disorder applied to the innermost rods surrounding the defect site dominates in determining the peak field and resonant frequency of the structure. We also show that small disorder (∼1%) can lead to an increase in peak field in certain cases due to structure optimization. We find that increasing levels of disorder lead to a decreasing average peak field for all structures. Whereas the mean resonant frequency remains constant for increasing disorder while the standard deviation increases. We then develop an understanding for this behaviour in terms of frequency detuning and mode confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Adolphsen, K. Bane, T. Higo, K. Kubo, R. Miller, R. Ruth, K. Thompson, J. Wang, Phys. Rev. Lett. 74, 2475 (1995)

    Article  ADS  Google Scholar 

  2. M.E. Hill, C. Adolphsen, W. Baumgartner, R.S. Callin, X.E. Lin, M. Seidel, T. Slaton, D.H. Whittum, Phys. Rev. Lett. 87, 094801 (2001)

    Article  ADS  Google Scholar 

  3. H.H. Braun, S. Dobert, I. Wilson, W. Wuensch, Phys. Rev. Lett. 90, 224801 (2003)

    Article  ADS  Google Scholar 

  4. K. Bane, M. Sands, Stanford Linear Accelerator Center Report No. SLAC-PUB-4441 (1987) (unpublished)

  5. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  6. W.P. Leemans, P. Catravas, E. Esarey, C.G.R. Geddes, C. Toth, R. Trines, C.B. Schroeder, B.A. Shadwick, J. van Tilborg, J. Faure, Phys. Rev. Lett. 89, 174802 (2002)

    Article  ADS  Google Scholar 

  7. P. Muggli, B.E. Blue, C.E. Clayton, S. Deng, F.-J. Decker, M.J. Hogan, C. Huang, R. Iverson, C. Joshi, T.C. Katsouleas, S. Lee, W. Lu, K.A. Marsh, W.B. Mori, C.L. O’Connell, P. Raimondi, R. Siemann, D. Walz, Phys. Rev. Lett. 93, 014802 (2004)

    Article  ADS  Google Scholar 

  8. Advanced Accelerator Concepts, AIP Conference Proceedings, ed. by V. Yakimenko (AIP, New York, 2004), vol. 737, p. 783

  9. D.R. Smith, S. Schultz, N. Kroll, M. Sigalas, K.M. Ho, C.M. Soukoulis, Appl. Phys. Lett. 65, 645 (1994)

    Article  ADS  Google Scholar 

  10. E.I. Smirnova, C. Chen, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, J. App. Phys. 91, 960 (2002)

    Article  ADS  Google Scholar 

  11. E.I. Smirnova, A.S. Kesar, I. Mastovsky, M.A. Shapiro, R.J. Temkin, Phys. Rev. Lett. 95, 074801 (2005)

    Article  ADS  Google Scholar 

  12. C.M. Soukoulis (ed.), Photonic Bandgaps and Localization (Plenum, New York, 1993)

    Google Scholar 

  13. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  14. E. Burstein, C. Weisbuch (eds.), Confined Electrons and Photons: New Physics and Applications (Plenum, New York, 1995)

    Google Scholar 

  15. R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alherhand, Phys. Rev. B 48, 8434 (1993)

    Article  ADS  Google Scholar 

  16. K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)

    Article  ADS  Google Scholar 

  17. J.R. Sirigiri, K.E. Kreischer, J. Machuzak, I. Mastovsky, M.A. Shapiro, R.J. Temkin, Phys. Rev. Lett. 86, 5628–5631 (2001)

    Article  ADS  Google Scholar 

  18. A. Smirnov, D. Yu, in The Proceedings of Particle Accelerator Conference (PAC 05), 16–20 May 2005, pp. 3094–3096

  19. R. Harrington, Time Harmonic Electromagnetic Fields (McGraw Hill, New York, 1961)

    Google Scholar 

  20. S.L. McCall, P.M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, Phys. Rev. Lett. 67(15), 2017 (1991)

    Article  ADS  Google Scholar 

  21. M.M. Sigalas, C.M. Soukoulis, C.T. Chan, R. Biswas, K.M. Ho, Phys. Rev. B 59(20), 12767 (1999)

    Article  ADS  Google Scholar 

  22. D.M. Beggs, M.A. Kaliteevski, R.A. Abram, D. Cassagne, J.P. Albert, J. Phys. Condens. Matter 17, 1781 (2005)

    Article  ADS  Google Scholar 

  23. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, J. Appl. Phys. 78(3), 1415 (1995)

    Article  ADS  Google Scholar 

  24. W.R. Frei, H.T. Johnson, Phys. Rev. B 70, 165116 (2004)

    Article  ADS  Google Scholar 

  25. Z.H. Zhu, W.M. Ye, J.R. Ji, X.D. Yuan, C. Zen, Appl. Phys. B 88, 231 (2007)

    Article  ADS  Google Scholar 

  26. A. Rodriguez, M. Ibanescu, J.D. Joannopoulos, S.G. Johnson, Opt. Lett. 30, 3192 (2005)

    Article  ADS  Google Scholar 

  27. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000)

    MATH  Google Scholar 

  28. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, G. Burr, Improving accuracy by subpixel smoothing in FDTD. Opt. Lett. 31(20), 2972 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, C.J., Seviour, R. Effects of disorder on the frequency and field of photonic-crystal cavity resonators. Appl. Phys. B 94, 381–388 (2009). https://doi.org/10.1007/s00340-008-3330-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3330-x

PACS

Navigation