Skip to main content
Log in

Spectroscopic and travelling-wave lasing characterisation of tetraphenylbenzidine and di-naphtalenyl-diphenylbenzidine

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The organic light emitting diode (OLED) hole transport molecules N,N,N’,N’-tetraphenylbenzidine (TPB, triphenylamine dimer TAD or TPD) and N,N’-bis(2-naphtalenyl)-N,N’-bis(phenylbenzidine) (β-NPB, naphtyl-diphenylamine dimer β-NPD), dissolved in tetrahydrofuran (THF) and as neat film, are characterized by optical absorption and emission spectroscopy. The absorption and stimulated emission cross-section spectra, the fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence polarization, and fluorescence lifetimes are determined. The lasing behaviour is studied by picosecond laser pulse excitation (excitation wavelength 347.15 nm, pulse duration 35 ps). The excited-state absorption at the pump laser wavelength is determined by saturable absorption measurement. Low-Q laser oscillation of TPB in THF is achieved by transverse pumping of the dye in a cell. The excited-state absorption of TPB in THF at the laser wavelength is extracted from the laser threshold. In TPB neat films, wave-guided travelling-wave lasing was obtained. No laser action was achieved for β-NPB because of small S1-S0 stimulated emission cross-section, and the presence of excited-state absorption in the fluorescence wavelength region. The TPB and β-NPB results are compared with the corresponding spectroscopic and lasing behaviour of the related methyl-substituted triphenylamine dimers, 3-methyl-TPD and 4-methyl-TPD, which are well established OLED hole transport materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.V. Vardeny, O. Korovyanko, ‘Conjugated Polymers. Theory, Synthesis, Properties, and Characterization’, In: Handbook of Conducting Polymers, ed. by T.A. Skotheim, J.R. Reynolds, 3rd edn. (CRC, Boca Raton, USA, 2007), Chapt. 22

  2. U. Lemmer, A. Haugeneder, C. Kallinger, J. Feldmann, In: Semiconducting Polymers. Chemistry, Physics and Engineering, ed. by G. Hadziioannou, P.F. van Hutten (Wiley-VCH, Weinheim, 2000), Chapt. 10, p. 309

    Google Scholar 

  3. W. Holzer, A. Penzkofer, S. Schrader, B. Grimm, Opt. Quantum Electron. 37, 475 (2005)

    Article  Google Scholar 

  4. W. Holzer, A. Penzkofer, S.-H. Gong, A.P. Davey, W.J. Blau, Opt. Quantum Electron. 29, 713 (1997)

    Article  Google Scholar 

  5. G. Heliotis, D.D.C. Bradley, G.A. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 81, 415 (2002)

    Article  ADS  Google Scholar 

  6. M.D. McGehee, A.J. Heeger, Adv. Mater. 12, 1655 (2000)

    Article  Google Scholar 

  7. W. Holzer, A. Penzkofer, T. Schmitt, A. Hartmann, C. Bader, H. Tillmann, D. Raabe, R. Stockmann, H.-H. Hörhold, Opt. Quantum Electron. 33, 121 (2001)

    Article  Google Scholar 

  8. W. Holzer, A. Penzkofer, H. Tillmann, H.-H. Hörhold, Synth. Met. 140, 155 (2004)

    Article  Google Scholar 

  9. H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Nowotny, E. Klemm, W. Holzer, A. Penzkofer, Synth. Met. 119, 199 (2001)

    Article  Google Scholar 

  10. H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, A. Penzkofer, SPIE 4464, 317 (2002)

    Google Scholar 

  11. T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruseckas, V. Sundström, G. Björk, M. Granström, O. Inganäs, Chem. Phys. Lett. 288, 879 (1998)

    Article  ADS  Google Scholar 

  12. W. Holzer, A. Penzkofer, H. Tillmann, E. Klemm, H.-H. Hörhold, Synth. Met. 124, 455 (2001)

    Article  Google Scholar 

  13. W. Holzer, A. Penzkofer, H. Tillmann, D. Raabe, H.-H. Hörhold, Opt. Mater. 19, 283 (2002)

    Article  ADS  Google Scholar 

  14. F.P. Schäfer (Ed.), Dye Lasers, Topics in Applied Physics, Vol. 1, 2nd revised edn. (Springer, Berlin, 1997)

  15. J. Salbeck, M. Schörner, T. Fuhrmann, Thin Solid Films 417, 20 (2002)

    Article  ADS  Google Scholar 

  16. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin. M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weinmann, J. Wang, P. Hinze, A. Gerhard, P. Stössel, H. Vestweber, Adv. Mater. 17, 31 (2005)

    Article  Google Scholar 

  17. W. Holzer, A. Penzkofer, H.-H. Hörhold, Synth. Met. 113, 281 (2000)

    Article  Google Scholar 

  18. R. Philip, W. Holzer, A. Penzkofer, H. Tillmann, H.-H. Hörhold, Synth. Met. 132, 297 (2003)

    Article  Google Scholar 

  19. W. Holzer, A. Penzkofer, A. Lux, H.-H. Hörhold, E.B. Kley, Synth. Met. 145, 119 (2004)

    Article  Google Scholar 

  20. M. Zavelani-Rossi, G. Lanzani, S. de Silvestri, M. Anni, G. Gigli, R. Cingolati, G. Barbarella, L. Favaretto, Appl. Phys. Lett. 79, 4082 (2001)

    Article  ADS  Google Scholar 

  21. N. Johansson, J. Salbeck, J. Bauer, F. Weissörtel, P. Bröms, A. Andersson, W.R. Salaneck, Adv. Mater. 10, 1136 (1998)

    Article  Google Scholar 

  22. T. Spehr, R. Pudzich, T. Fuhrmann, J. Salbeck, Org. Electron. 4, 61 (2003)

    Article  Google Scholar 

  23. M. Berggren, A. Dodabalapur, R.E. Slusher, Z. Bao, Nature 389, 466 (1997)

    Article  ADS  Google Scholar 

  24. H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, A. Penzkofer, Proc. SPIE 4105, 431 (2001)

    Article  ADS  Google Scholar 

  25. A. Penzkofer, W. Holzer, S.-H. Gong, D.D. Bradley, X. Long, A. Bleyer, W.J. Blau, A.P. Davey, In: LASERS’98, ed. by V.J. Corcoran, T.A. Goldman (STS, Mc Lean, 1999), p. 394

  26. P.M. Brosenberger, D.S. Weiss, Organic Photoreceptors for Xerography (Marcel Dekker, New York, 1998)

    Google Scholar 

  27. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals (Oxford University Press, New York, 1999)

    Google Scholar 

  28. R. Farchioni, G. Grosso (Eds.), Organic Electronic Materials, Conjugated Polymers and Low Molecular Weight Organic Solvents (Springer, Berlin, 2001)

  29. J. Shinar (Ed.), Light emitting diodes. A Survey (Springer, New York, 2004)

  30. Y. Kawamura, S. Yanagida, S.R. Forrest, J. Appl. Phys. 92, 87 (2002)

    Article  ADS  Google Scholar 

  31. V. Cleave, G. Yahioglu, P.L. Barny, R.H. Friend, N. Tessler, Adv. Mater. 11, 285 (1999)

    Article  Google Scholar 

  32. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Silbey, M.E. Thompson, S.R. Forrest, Nature 395, 151 (1998)

    Article  ADS  Google Scholar 

  33. A.K. Bansal, W. Holzer, A. Penzkofer, T. Tsuboi, Chem. Phys. 330, 118 (2006)

    Article  ADS  Google Scholar 

  34. A.K. Bansal, A. Penzkofer, W. Holzer, T. Tsuboi, Ukr. J. Phys. 52, 353 (2007)

    Google Scholar 

  35. M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 75, 4 (1999)

    Article  ADS  Google Scholar 

  36. X. Gong, J.C. Ostrowski, D. Moses, G.C. Guillermo, C. Bazan, A.J. Heeger, Adv. Funct. Mater. 13, 439 (2003)

    Article  Google Scholar 

  37. W. Holzer, A. Penzkofer, T. Tsuboi, Chem. Phys. 308, 93 (2005)

    Article  ADS  Google Scholar 

  38. W. Holzer, A. Penzkofer, R. Stockmann, H. Meysel, H. Liebegott, H.-H. Hörhold, Synth. Met. 125, 343 (2002)

    Article  Google Scholar 

  39. T.P.I. Saragi, T. Fuhrmann-Lieker, J. Salbeck, Adv. Funct. Mater. 16, 966 (2006)

    Article  Google Scholar 

  40. Y. Kawamura, H. Yamaoto, K. Goushi, H. Sasabe, H. Yoshizaki, Appl. Phys. Lett. 84, 2724 (2004)

    Article  ADS  Google Scholar 

  41. R. Fáber, G.F. Mielke, P. Rapta, A. Stasko, O. Nuyken, Collect. Czech. Chem. Commun. 65, 1403 (2000)

    Google Scholar 

  42. T. Yokozumi, Y. Miyashita, K. Hayashi, K. Ogino, H. Usui, M. Gonda, H. Sato, Thin Solid Films 449, 173 (2004)

    Article  ADS  Google Scholar 

  43. Y. Sato, S. Ichinosawa, T. Fugono, Y. Murata, Synth. Met. 111/112, 25 (2000)

    Google Scholar 

  44. M. Gross, D. Müller, C. Bräuchle, K. Meerholz, Synth. Met. 102, 1147 (1999)

    Article  Google Scholar 

  45. A. Penzkofer, E. Drotleff, W. Holzer, Opt. Commun. 158, 221 (1998)

    Article  ADS  Google Scholar 

  46. W. Holzer, M. Pichlmaier, E. Drotleff, A. Penzkofer, D.D.C. Bradley, W.J. Blau, Opt. Commun. 163, 24 (1999)

    Article  ADS  Google Scholar 

  47. A. Penzkofer, W. Leupacher, J. Luminesc. 37, 61 (1987)

    Article  Google Scholar 

  48. W. Holzer, M. Pichlmaier, A. Penzkofer, D.D.C. Bradley, W.J. Blau, Chem. Phys. 246, 445 (1999)

    Article  Google Scholar 

  49. W.H. Melhuish, J. Phys. Chem. 72, 445 (1968)

    Google Scholar 

  50. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983)

    Google Scholar 

  51. P. Weidner, A. Penzkofer, Opt. Quantum Electron. 25, 1 (1993)

    Article  Google Scholar 

  52. A. Penzkofer, Appl. Phys. B 40, 85 (1986)

    Article  ADS  Google Scholar 

  53. A. Penzkofer, W. Holzer, H. Tillmann, H.-H. Hörhold, Opt. Commun. 229, 279 (2004)

    Article  ADS  Google Scholar 

  54. H. Kogelnik, in: Integrated Optics, Topics in Applied Physics, ed. by T. Tamir (Springer, Berlin, 1979), Vol. 7, p. 13

  55. F. Ammer, A. Penzkofer, P. Weidner, Chem. Phys. 192, 325 (1995)

    Article  ADS  Google Scholar 

  56. G.R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University Press, New York, 1986)

    Google Scholar 

  57. T. Förster, Fluoreszenz organischer Verbindungen (Vandenhoeck und Ruprecht, Göttingen, 1951)

    Google Scholar 

  58. B. Valeur, Molecular Fluorescence. Principles and Applications (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  59. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    Article  ADS  Google Scholar 

  60. O.G. Peterson, J.P. Webb, W.C. McColgin, J.H. Eberly, J. Appl. Phys. 142, 1917 (1971)

    Article  ADS  Google Scholar 

  61. A.V. Deshpande, A. Beidoun, A. Penzkofer, G. Wagenblast, Chem. Phys. 142, 123 (1990)

    Article  Google Scholar 

  62. B.W. D’Andrade, S.R. Forrest, Adv. Mater. 16, 1585 (2004)

    Article  Google Scholar 

  63. A. Penzkofer, W. Falkenstein, W. Kaiser, Chem. Phys. Lett. 44, 82 (1976)

    Article  ADS  Google Scholar 

  64. F. Graf, A. Penzkofer, Opt. Quantum Electron. 17, 53 (1989)

    Article  Google Scholar 

  65. W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. García-Moreno, R. Sastre, F.J. Duarte, Chem. Phys. 256, 125 (2000)

    Article  Google Scholar 

  66. S.-H. Gong, A. Penzkofer, Opt. Quantum Electron. 31, 269 (1999)

    Article  Google Scholar 

  67. A.K. Bansal, W. Holzer, A. Penzkofer, E.B. Kley, Opt. Commun. (2008), DOI: 10.1016/j.optcom.2008.03.032

  68. A. Penzkofer, Appl. Phys. B 46, 43 (1988)

    Article  ADS  Google Scholar 

  69. G. Grönninger, A. Penzkofer, Opt. Quantum Electron. 16, 225 (1984)

    Article  Google Scholar 

  70. R.G. Kepler, V.S. Valencia, S.J. Jacobs, J.J. McNamara, Synth. Met. 78, 227 (1996)

    Article  Google Scholar 

  71. K.H. Hellwege, A.M. Hellwege (Eds.), Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. 6. Auflage. II. Band. Eigenschaften der Materie in ihren Aggregatzuständen. 8. Teil: Optische Konstanten (Springer, Berlin, 1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Penzkofer.

Additional information

PACS

42.70.Hj; 42.55.Mv; 33.20.Kf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, A., Penzkofer, A. Spectroscopic and travelling-wave lasing characterisation of tetraphenylbenzidine and di-naphtalenyl-diphenylbenzidine. Appl. Phys. B 91, 559–569 (2008). https://doi.org/10.1007/s00340-008-3037-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3037-z

Keywords

Navigation