Skip to main content
Log in

Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A quantum cascade laser operating near room temperature with thermoelectric (TE) cooling has been used in both continuous-wave (cw) mode (-9 °C) and pulsed mode (+45 °C) to detect atmospheric nitric oxide using spectral lines at 1900.07 cm-1 (5.3 μm). The totally non-cryogenic spectrometer integrates the laser with a 69-m astigmatic multi-pass cell and a TE-cooled infrared detector to enable operation for extended time periods without operator attention. The pattern of reflections on the astigmatic cell mirrors has been designed to minimize optical interference fringes, which are substantially greater with cw mode than with pulsed operation. The detection method uses direct absorption with rapid- scan sweep integration to achieve sub-second time response. Detection precision for NO in air of 0.5 parts in 109 Hz-1/2 (1σ) is obtained in pulsed mode with an Allan variance minimum corresponding to 0.1 parts in 109 after 30-s averaging time. The precision in cw mode improves to 0.1 parts in 109 Hz-1/2 and 0.03 parts in 109 after 30-s averaging, corresponding to an absorbance per unit path length of 2×10-10 cm-1. The advantages and disadvantages of cw compared to pulsed operation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002)

    Article  ADS  Google Scholar 

  2. S. Blaser, D.A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, J. Faist, Appl. Phys. Lett. 86, 041109 (2005)

    Article  ADS  Google Scholar 

  3. J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden, M. Razeghi, Appl. Phys. Lett. 87, 041104 (2005)

    Article  ADS  Google Scholar 

  4. J.S. Yu, A. Evans, S. Slivken, S.R. Darvish, M. Razeghi, IEEE Photon. Technol. Lett. 17, 1154 (2005)

    Article  Google Scholar 

  5. Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)

    Article  ADS  Google Scholar 

  6. B.W.M. Moeskops, S.M. Cristescu, F.J.M. Harren, Opt. Lett. 31, 823 (2006)

    Article  ADS  Google Scholar 

  7. D.D. Nelson Jr., J.B. McManus, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Opt. Lett. 31, 2012 (2006)

    Article  ADS  Google Scholar 

  8. R. Jimenez, S. Herndon, J.H. Shorter, D.D. Nelson, J.B. McManus, M.S. Zahnsier, Proc. SPIE 5738, 318 (2005)

    Article  ADS  Google Scholar 

  9. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 80, 617 (2005)

    Article  ADS  Google Scholar 

  10. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R.F. Curl, F.K. Tittle, Appl. Opt. 43, 6040 (2004)

    Article  ADS  Google Scholar 

  11. S.C. Herndon, M.S. Zahniser, D.D. Nelson Jr., J.H. Shorter, J.B. McManus, R. Jimenez, C. Warneke, J.A. de Gouw, accepted for publication in J. Geophys. Res. (2006)

  12. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, W.J. Lafferty, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  13. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, S. Blaser, IEEE J. Quantum Electron. QE-38, 533 (2002)

    Article  ADS  Google Scholar 

  14. S. Blaser, L. Hvozdara, Y. Bonetti, A. Muller, A. Bächle, S. Jochum, S. Hansmann, T. Aellen, M. Giovannini, J. Faist, Proc. SPIE 6133, 613301 (2006)

    Article  Google Scholar 

  15. D.D. Nelson, J.B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta 60, 3325 (2004)

    Article  Google Scholar 

  16. W.J. Riedel, Proc. IEEE 1433, 179 (1991)

    Google Scholar 

  17. J.B. McManus, P.L. Kebabian, M.S. Zahniser, Appl. Opt. 34, 3336 (1995)

    Article  ADS  Google Scholar 

  18. M. Taubmann, T. Myers, B. Cannon, R. Williams, F. Capasso, C. Gmachl, D.L. Sivco, A.Y. Cho, Opt. Lett. 27, 2164 (2002)

    Article  ADS  Google Scholar 

  19. R. Maulini, D.A. Yarekha, J.-M. Bulliard, M. Giovannini, J. Faist, E. Gini, Opt. Lett. 30, 2584 (2005)

    Article  ADS  Google Scholar 

  20. D.W. Allan, Proc. IEEE 54, 221 (1966)

    Article  Google Scholar 

  21. P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.B. McManus.

Additional information

PACS

07.88.+y; 42.62.Fi; 82.80.Gk; 92.60.Sz

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManus, J., Nelson, D., Herndon, S. et al. Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1 . Appl. Phys. B 85, 235–241 (2006). https://doi.org/10.1007/s00340-006-2407-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2407-7

Keywords

Navigation